論文の概要: Modelling Neuronal Behaviour with Time Series Regression: Recurrent
Neural Networks on C. Elegans Data
- arxiv url: http://arxiv.org/abs/2107.06762v1
- Date: Thu, 1 Jul 2021 10:39:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 18:23:43.340464
- Title: Modelling Neuronal Behaviour with Time Series Regression: Recurrent
Neural Networks on C. Elegans Data
- Title(参考訳): 時系列回帰による神経行動のモデル化:C.エレガンスデータに基づく繰り返しニューラルネットワーク
- Authors: Gon\c{c}alo Mestre (1 and 2), Ruxandra Barbulescu (1), Arlindo L.
Oliveira (1 and 2) and L. Miguel Silveira (1 and 2) ((1) INESC-ID, Rua Alves
Redol 9, 1000-029 Lisboa, (2) IST Tecnico Lisboa, Universidade de Lisboa, Av.
Rovisco Pais 1, 1049-001 Lisboa)
- Abstract要約: 我々は、C. Elegansの神経システムを、異なるニューラルネットワークアーキテクチャを用いてデータ駆動モデルでモデル化し、シミュレートする方法を示す。
隠れ層の大きさが4単位のGRUモデルでは,異なる刺激に対するシステムの応答を高精度に再現可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the inner complexity of the human nervous system, insight into the
dynamics of brain activity can be gained from understanding smaller and simpler
organisms, such as the nematode C. Elegans. The behavioural and structural
biology of these organisms is well-known, making them prime candidates for
benchmarking modelling and simulation techniques. In these complex neuronal
collections, classical, white-box modelling techniques based on intrinsic
structural or behavioural information are either unable to capture the profound
nonlinearities of the neuronal response to different stimuli or generate
extremely complex models, which are computationally intractable. In this paper
we show how the nervous system of C. Elegans can be modelled and simulated with
data-driven models using different neural network architectures. Specifically,
we target the use of state of the art recurrent neural networks architectures
such as LSTMs and GRUs and compare these architectures in terms of their
properties and their accuracy as well as the complexity of the resulting
models. We show that GRU models with a hidden layer size of 4 units are able to
accurately reproduce with high accuracy the system's response to very different
stimuli.
- Abstract(参考訳): ヒトの神経系の内部の複雑さを考えると、線虫C.エレガンスのようなより小さくより単純な生物を理解することで脳活動のダイナミクスの洞察を得ることができる。
これらの生物の振る舞いや構造生物学はよく知られており、ベンチマークモデリングやシミュレーションの手法の候補となっている。
これらの複雑なニューロンコレクションでは、内在的構造情報や行動情報に基づく古典的なホワイトボックスモデリング技術は、異なる刺激に対する神経反応の深い非線形性を捉えることができず、計算的に難解な非常に複雑なモデルを生成する。
本稿では、C. Elegansの神経システムを、異なるニューラルネットワークアーキテクチャを用いてデータ駆動モデルでモデル化し、シミュレートする方法を示す。
具体的には、LSTMやGRUといったアートリカレントニューラルネットワークアーキテクチャの状態の使用を目標とし、それらの特性と精度、および結果のモデルの複雑さの観点から、これらのアーキテクチャを比較します。
隠れ層の大きさが4単位のGRUモデルでは,異なる刺激に対するシステムの応答を高精度に再現可能であることを示す。
関連論文リスト
- Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
視覚入力から行動出力まで,包括的な視覚的意思決定モデルを実装した。
我々のモデルは人間の行動と密接に一致し、霊長類の神経活動を反映する。
ニューロイメージング・インフォームド・ファインチューニング手法を導入し、モデルに適用し、性能改善を実現した。
論文 参考訳(メタデータ) (2024-09-04T02:38:52Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
ニューラル抽象化は、最近、複雑な非線形力学モデルの形式近似として導入されている。
我々は形式的帰納的合成法を用いて、これらのセマンティクスを用いた動的モデルをもたらすニューラル抽象化を生成する。
論文 参考訳(メタデータ) (2023-07-28T13:22:32Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Simple and complex spiking neurons: perspectives and analysis in a
simple STDP scenario [0.7829352305480283]
スパイキングニューラルネットワーク(SNN)は、生物学や神経科学にヒントを得て、高速で効率的な学習システムを構築する。
この研究は、文学における様々なニューロンモデルを考察し、単変数で効率的な計算ニューロンモデルを選択し、様々な種類の複雑さを提示する。
我々は, LIF, Quadratic I&F (QIF) および Exponential I&F (EIF) の3つの単純なI&Fニューロンモデルの比較研究を行い, より複雑なモデルの使用によってシステムの性能が向上するかどうかを検証した。
論文 参考訳(メタデータ) (2022-06-28T10:01:51Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
記憶の神経機構は、人工知能における表現の問題と非常に密接な関係を持っている。
脳内のニューロンのネットワークとその情報処理のシミュレーションを行う計算モデルが提案された。
論文 参考訳(メタデータ) (2020-11-27T01:34:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。