Stochastic thermodynamics of a finite quantum system coupled to two heat
baths
- URL: http://arxiv.org/abs/2108.02805v1
- Date: Thu, 5 Aug 2021 18:40:47 GMT
- Title: Stochastic thermodynamics of a finite quantum system coupled to two heat
baths
- Authors: Heinz-J\"urgen Schmidt and Jochen Gemmer
- Abstract summary: We consider a situation where an $N$-level system (NLS) is coupled successively to two heat baths with different temperatures.
We conclude that heat and entropy is flowing from the hot bath to the cold one.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a situation where an $N$-level system (NLS) is coupled
successively to two heat baths with different temperatures without being
necessarily thermalized and approaches a steady state. For this situation we
apply a general Jarzinski-type equation and conclude that heat and entropy is
flowing from the hot bath to the cold one. The Clausius relation between
increase of entropy and transfer of heat divided by a suitable temperature
assumes the form of two inequalities. Our approach is illustrated by an
analytical example. For the linear regime, i.~e., for small temperature
differences between the two heat baths we derive an expression for the heat
conduction coefficient.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Pseudomode treatment of strong-coupling quantum thermodynamics [0.0]
The evaluation of thermodynamic quantities in strong-coupling regimes requires a nonperturbative knowledge of the bath dynamics.
We derive expressions for heat, work, and average system-bath interaction energy that only involve the autocorrelation function of the bath.
We show in particular that this method allows for an efficient numerical evaluation of thermodynamic quantities.
arXiv Detail & Related papers (2024-07-25T09:11:45Z) - Heat currents in qubit systems [0.0]
We present explicit expressions for the heat currents in agreement with the second law of thermodynamics.
We also discuss issues regarding the possible presence of coherences in the steady state.
arXiv Detail & Related papers (2023-01-31T10:41:43Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Stochastic thermodynamics of a finite quantum system coupled to a heat
bath [0.0]
We find that heat and entropy is flowing from the hot bath to the cold NLS.
The Clausius relation between increase of entropy and transfer of heat divided by a suitable temperature assumes the form of two inequalities.
arXiv Detail & Related papers (2021-04-12T10:57:40Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Relativistic Quantum Thermodynamics of Moving Systems [0.0]
We analyse the thermodynamics of a quantum system in a trajectory of constant velocity that interacts with a static thermal bath.
We derive the master equation for the reduced dynamics of the moving quantum system.
A moving heat bath is physically equivalent to a mixture of heat baths at rest, each with a different temperature.
arXiv Detail & Related papers (2020-06-22T15:18:55Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.