論文の概要: Semi-device-independent full randomness amplification based on energy
bounds
- arxiv url: http://arxiv.org/abs/2108.09100v1
- Date: Fri, 20 Aug 2021 10:34:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 23:12:48.616010
- Title: Semi-device-independent full randomness amplification based on energy
bounds
- Title(参考訳): エネルギー境界に基づく半デバイス非依存フルランダムネス増幅
- Authors: Gabriel Senno, Antonio Ac\'in
- Abstract要約: 量子ベル非局所性(Quantum Bell nonlocality)は、サンサ・ヴァジラーニ情報源のランダム性を増幅するプロトコルの設計を可能にする。
我々は、絡み合い状態や測定の完全な特徴を必要とせず、完全なランダム性増幅を実現することができることを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Bell nonlocality allows for the design of protocols that amplify the
randomness of public and arbitrarily biased Santha-Vazirani sources, a
classically impossible task. Information-theoretical security in these
protocols is certified in a device-independent manner, i.e. solely from the
observed nonlocal statistics and without any assumption about the
inner-workings of the intervening devices. On the other hand, if one is willing
to trust on a complete quantum-mechanical description of a protocol's devices,
the elementary scheme in which a qubit is alternatively measured in a pair of
mutually unbiased bases is, straightforwardly, a protocol for randomness
amplification. In this work, we study the unexplored middle ground. We prove
that full randomness amplification can be achieved without requiring
entanglement or a complete characterization of the intervening quantum states
and measurements. Based on the energy-bounded framework introduced in [Van
Himbeeck et al., Quantum 1, 33 (2017)], our prepare-and-measure protocol is
able to amplify the randomness of any public Santha-Vazirani source, requiring
the smallest number of inputs and outcomes possible and being secure against
quantum adversaries.
- Abstract(参考訳): 量子ベル非局所性(quantum bell nonlocality)は、公と任意に偏ったsantha-vaziraniソースのランダム性を増幅するプロトコルの設計を可能にする。
これらのプロトコルにおける情報理論的なセキュリティは、観察された非局所統計のみから、そして干渉するデバイスの内部動作についての仮定なしに、デバイスに依存しない方法で認証される。
一方、もしプロトコルの装置の完全な量子力学的記述を信頼するなら、量子ビットが相互に偏りのない基底のペアで代用的に測定される基本スキームは、簡単にはランダムネス増幅のためのプロトコルである。
本研究では,未調査の中間地盤について検討する。
完全ランダム性増幅は、絡み合いや干渉する量子状態と測定の完全な特徴付けを必要とせずに実現可能であることが証明される。
van himbeeck et al., quantum 1, 33 (2017)]で導入されたエネルギーバウンドフレームワークに基づいて、我々の準備・測定プロトコルは、あらゆる公開santha-vaziraniソースのランダム性を増幅することができ、可能な最小数の入力と結果を必要とし、量子敵に対して安全である。
関連論文リスト
- Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
量子性の証明は、効率的な量子コンピュータが通過できる、効率よく検証可能な対話型テストである。
既存のシングルラウンドプロトコルは大きな量子回路を必要とするが、マルチラウンドプロトコルはより小さな回路を使用するが、実験的な中間回路測定を必要とする。
我々は、既存の知識仮定に基づいて、量子性の効率的なシングルラウンド証明を構築した。
論文 参考訳(メタデータ) (2024-05-24T17:33:10Z) - Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
物理的非閉包関数(PUF)は、固有の非閉包不可能な物理的ランダム性を利用して、ユニークな入出力ペアを生成する。
量子PUF(Quantum PUFs)は、量子状態を入出力ペアとして使用することによって、この概念を拡張している。
ランダムなユニタリQPUFは、量子多項式時間に対する実存的非偽造性を達成できないことを示す。
本稿では,QPUFが非単体量子チャネルとして機能する2番目のモデルを提案する。
論文 参考訳(メタデータ) (2024-04-17T12:16:41Z) - A universal scheme to self-test any quantum state and extremal measurement [41.94295877935867]
この研究で考慮された量子ネットワークは、現在の技術で実装可能な単純なスターネットワークである。
我々の目的のために、任意の数のパーティーで2次元トモグラフィー的に完備な測定セットを自己検証するためにも使用できるスキームを構築した。
論文 参考訳(メタデータ) (2023-12-07T16:20:28Z) - Improvements on Device Independent and Semi-Device Independent Protocols
of Randomness Expansion [0.0]
デバイス独立性(DI)およびセミデバイス独立性(セミデバイス独立性)プロトコルについて論じる。
出力ランダムネス率、セキュリティ、場合によってはその両方で既存のプロトコルを超える拡張DIと半DIプロトコルを導入します。
注目すべき貢献は、CHSH不等式違反に基づくDIプロトコルの有限ラウンドランダム化率を大幅に向上させる、入力ランダム化をリサイクルするランダム性拡張プロトコルの導入である。
論文 参考訳(メタデータ) (2023-11-22T17:03:04Z) - Entropy Accumulation under Post-Quantum Cryptographic Assumptions [4.416484585765028]
デバイス非依存(DI)量子プロトコルでは、セキュリティステートメントは量子装置の特性を損なう。
本稿では,量子情報理論のツールの組み合わせを利用して,そのようなプロトコルの安全性を証明するフレキシブルなフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-02T12:52:54Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
ベル試験は量子ネットワークにおける絡み合いを検証する最も厳密な方法である。
当事者間の合図がなければ、ベルの不平等の違反はもはや使用できない。
本稿では,実験的確率分布における相関の影響を数値的に補正する半デバイス独立プロトコルを提案する。
論文 参考訳(メタデータ) (2023-05-23T14:39:08Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
粒子の不識別性は量子力学の基本的な原理である。
非アベリア・エノンのブレイディングは、退化波動関数の空間において回転を引き起こす。
我々は,エノンの融合規則を実験的に検証し,それらの統計値を実現するためにそれらを編み取る。
論文 参考訳(メタデータ) (2022-10-19T02:28:44Z) - Quantum Complementarity Approach to Device-Independent Security [2.782396962787398]
デバイスに依存しない量子暗号タスクの相補性セキュリティの起源を示す。
有限サイズ解析のための古典シャノン理論におけるサンプルエントロピーを一般化する。
最近のイオントラップベースのデバイス非依存の量子キー分散実験のデータにそれを適用すれば、データサイズの要件を3分の1以下に削減できる。
論文 参考訳(メタデータ) (2021-11-27T09:42:44Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
単一光子の絡み合った状態の非局所性は、それでもビームスプリッタと光検出器のみからなる量子ネットワークにおいて明らかにできることを示す。
この結果から,単光子絡み合いはベルベースの量子情報プロトコルに有用な真のネットワーク非局所相関を生成するための有望な解となる可能性が示唆された。
論文 参考訳(メタデータ) (2021-08-03T20:13:24Z) - Unbounded randomness from uncharacterized sources [0.0]
Device-Independent と Semi-Device-Independent のシナリオでは、ランダム性は射影測定を用いて証明される。
正の演算子値測定(POVM)に基づく新しいソースデバイス非依存プロトコルを提案する。
偏光符号化された量子ビットと最大6個のPOVMを用いた,コンパクトでシンプルなフォトニックセットアップで実験を行った。
論文 参考訳(メタデータ) (2020-10-12T15:54:22Z) - Discrete-phase-randomized measurement-device-independent quantum key
distribution [1.3706331473063877]
測定デバイスに依存しない量子鍵分布には不完全な位相ランダム化のためのループホールが存在することを示す。
本稿では、このソース側抜け穴を塞ぐソリューションとして、離散位相ランダム化計測デバイス非依存量子鍵分布プロトコルを提案する。
論文 参考訳(メタデータ) (2020-06-22T03:10:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。