論文の概要: Key Considerations for the Responsible Development and Fielding of
Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2108.12289v1
- Date: Thu, 19 Aug 2021 05:34:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-18 00:59:41.820033
- Title: Key Considerations for the Responsible Development and Fielding of
Artificial Intelligence
- Title(参考訳): 人工知能の責任ある開発とフィールド化のための重要な考察
- Authors: Eric Horvitz, Jessica Young, Rama G. Elluru, Chuck Howell
- Abstract要約: 批判的な課題を説明し、優先的に考慮すべきトピックについて推奨する。
キー・リフレクションズ(Key considerations)は、アメリカ合衆国政府の省庁や国家安全保障に批判的な機関が採用するためのレンズで開発された。
- 参考スコア(独自算出の注目度): 19.827628169952295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We review key considerations, practices, and areas for future work aimed at
the responsible development and fielding of AI technologies. We describe
critical challenges and make recommendations on topics that should be given
priority consideration, practices that should be implemented, and policies that
should be defined or updated to reflect developments with capabilities and uses
of AI technologies. The Key Considerations were developed with a lens for
adoption by U.S. government departments and agencies critical to national
security. However, they are relevant more generally for the design,
construction, and use of AI systems.
- Abstract(参考訳): 我々は、ai技術の責任ある開発とフィールド化を目的とした将来の作業のための重要な考慮、実践、および分野について検討する。
我々は、重要な課題を説明し、優先順位を付けるべきトピック、実装すべきプラクティス、AIテクノロジの能力と使用に関する開発を反映して定義または更新されるべきポリシーについて推奨する。
主要な考慮事項は、国家安全保障に重要な米国政府の省や機関が採用するためのレンズとして開発された。
しかし、より一般的には、AIシステムの設計、構築、使用に関係している。
関連論文リスト
- Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Developing and Deploying Industry Standards for Artificial Intelligence in Education (AIED): Challenges, Strategies, and Future Directions [22.65961106637345]
AIED(Artificial Intelligence in Education)は、教育実践に革命をもたらすことを約束している。
AIEDソリューションの開発とデプロイにおける標準化されたプラクティスの欠如は、断片化されたエコシステムにつながった。
この記事では、AIEDにおける業界標準の開発と実装に関する重要なニーズに対処することを目的としている。
論文 参考訳(メタデータ) (2024-03-13T22:38:08Z) - Towards a Privacy and Security-Aware Framework for Ethical AI: Guiding
the Development and Assessment of AI Systems [0.0]
本研究は2020年から2023年までの系統的な文献レビューを行う。
本研究は,SLRから抽出した知識の合成を通じて,プライバシとセキュリティを意識したAIシステムに適した概念的枠組みを提案する。
論文 参考訳(メタデータ) (2024-03-13T15:39:57Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
EUは最近、AIへの信頼の必要性を強調するいくつかの出版物を公表した。
これは国際規制の緊急の必要性を浮き彫りにする。
本稿は、私たちの知る限り、責任あるAIの最初の統一された定義を包括的かつ包括的に紹介する。
論文 参考訳(メタデータ) (2024-03-11T17:01:13Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Towards Implementing Responsible AI [22.514717870367623]
我々は,AIシステムの設計と開発において,ソフトウェア工学で使用されるプロセスに適応する4つの側面を提案する。
健全な発見は、AIシステム設計と開発、ソフトウェアエンジニアリングで使用されるプロセスの適応の4つの側面をカバーしている。
論文 参考訳(メタデータ) (2022-05-09T14:59:23Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Where Responsible AI meets Reality: Practitioner Perspectives on
Enablers for shifting Organizational Practices [3.119859292303396]
本稿では,組織文化と構造がAI実践における責任あるイニシアチブの有効性に与える影響を分析するための枠組みについて検討し,提案する。
我々は、業界で働く実践者との半構造化質的なインタビューの結果、共通の課題、倫理的緊張、そして責任あるAIイニシアチブのための効果的なイネーブラーについて調査する。
論文 参考訳(メタデータ) (2020-06-22T15:57:30Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。