論文の概要: A quantum-classical eigensolver using multiscale entanglement
renormalization
- arxiv url: http://arxiv.org/abs/2108.13401v3
- Date: Tue, 21 Mar 2023 18:14:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 07:36:10.521201
- Title: A quantum-classical eigensolver using multiscale entanglement
renormalization
- Title(参考訳): マルチスケールエンタングルメント再正規化を用いた量子古典固有解法
- Authors: Qiang Miao and Thomas Barthel
- Abstract要約: 強相関量子物質のシミュレーションのための変分量子固有解法(VQE)を提案する。
これは、対応する古典的アルゴリズムよりも計算コストがかなり低い。
イオンシャットリング機能を備えたイオントラップデバイスとしては特に魅力的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a variational quantum eigensolver (VQE) for the simulation of
strongly-correlated quantum matter based on a multi-scale entanglement
renormalization ansatz (MERA) and gradient-based optimization. This MERA
quantum eigensolver has substantially lower computation costs than
corresponding classical algorithms. Due to its narrow causal cone, the
algorithm can be implemented on noisy intermediate-scale (NISQ) devices and
still describe large systems. It is particularly attractive for ion-trap
devices with ion-shuttling capabilities. The number of required qubits is
system-size independent, and increases only to a logarithmic scaling when using
quantum amplitude estimation to speed up gradient evaluations. Translation
invariance can be used to make computation costs square-logarithmic in the
system size and describe the thermodynamic limit. We demonstrate the approach
numerically for a MERA with Trotterized disentanglers and isometries. With a
few Trotter steps, one recovers the accuracy of the full MERA.
- Abstract(参考訳): マルチスケールエンタングルメント再正規化アンサッツ(MERA)と勾配に基づく最適化に基づく強相関量子物質のシミュレーションのための変分量子固有解法(VQE)を提案する。
このMERA量子固有解法は、対応する古典的アルゴリズムよりも計算コストがかなり低い。
狭い因果コーンのため、このアルゴリズムはノイズの多い中間スケール(NISQ)デバイスに実装でき、なおも大規模システムを記述することができる。
イオンシャットリング機能を持つイオントラップデバイスでは特に魅力的である。
必要量子ビットの数はシステムサイズ独立であり、勾配評価を高速化するために量子振幅推定を使用すると対数スケーリングにのみ増加する。
翻訳不変性は、計算コストをシステムサイズで2乗対数的にし、熱力学限界を記述するために用いられる。
本研究では,ロータライズディエンタングルと等方性を持つmeraに対して,数値的にそのアプローチを示す。
いくつかのトロッターステップで、meraの完全な精度を回復する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
原理として、指数関数的にスケールする多電子波関数を線形にスケールする量子ビットレジスタに符号化することは、従来の量子化学法の限界を克服するための有望な解決策を提供する。
基底状態量子アルゴリズムが実用的であるためには、量子ビットの初期化が要求される基底状態の高品質な近似に必須である。
量子状態準備(QSP)は、古典的な計算から得られる近似固有状態の生成を可能にするが、量子情報のオラクルとして頻繁に扱われる。
論文 参考訳(メタデータ) (2023-11-06T18:53:50Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
行列乗法重み付けアルゴリズムの量子化'''は、古典的アルゴリズムよりも2次的に高速なSDPの近似解が得られることを示す。
この量子アルゴリズムを改良し、ギブス状態サンプリング器を熱純量子(TPQ)状態に置き換えることで、同様のスピードアップが得られることを示す。
論文 参考訳(メタデータ) (2023-10-11T18:00:53Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
量子運動方程式 (quantum equation of motion, QEOM) はフェルミオン多体系の励起特性を計算するためのハイブリッド量子古典アルゴリズムである。
我々は、qEOMが要求される量子測定数の独立性により量子的利益を示すことを明らかに示している。
論文 参考訳(メタデータ) (2023-09-18T22:10:26Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - Hybrid Quantum Classical Simulations [0.0]
量子コンピューティングの2つの主要なハイブリッド応用、すなわち量子近似最適化アルゴリズム(QAOA)と変分量子固有解法(VQE)について報告する。
どちらも、古典的な中央処理ユニットと量子処理ユニットの間の漸進的な通信を必要とするため、ハイブリッド量子古典アルゴリズムである。
論文 参考訳(メタデータ) (2022-10-06T10:49:15Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
変分量子アルゴリズム(VQA)は、ノイズプロセッサを介して量子アドバンテージを得るための最も有望な経路を提供する。
不完全性とデコヒーレンスによるゲートノイズは、バイアスを導入して勾配推定に影響を与える。
QEM(Quantum error mitigation)技術は、キュービット数の増加を必要とせずに、推定バイアスを低減することができる。
QEMは必要な反復回数を減らすことができるが、量子ノイズレベルが十分に小さい限りである。
論文 参考訳(メタデータ) (2022-09-23T10:48:04Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。