Effects of the free evolution in the Arthurs-Kelly model of simultaneous
measurement and in the retrodictive predictions of the Heisenberg uncertainty
relations
- URL: http://arxiv.org/abs/2109.00581v1
- Date: Wed, 1 Sep 2021 19:17:39 GMT
- Title: Effects of the free evolution in the Arthurs-Kelly model of simultaneous
measurement and in the retrodictive predictions of the Heisenberg uncertainty
relations
- Authors: J A Mendoza-Fierro, L M Ar\'evalo Aguilar, V M Vel\'azquez Aguilar
- Abstract summary: We study the effect of the full dynamics on the optimal limits of retrodictive and predictive accuracy of the simultaneous measurement process.
We show that the inclusion of the free Hamiltonian induces a spreading on the probability density of the measurement setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The simultaneous measurement approach of Arthurs and Kelly has been a
significant tool for the better understanding of the measurement process in
quantum mechanics. This model considers a strong interaction Hamiltonian by
discarding the free evolution part. In this work, we study the effect of the
full dynamics -- taking into account the free Hamiltonian -- on the optimal
limits of retrodictive and predictive accuracy of the simultaneous measurement
process of position and momentum observables. To do that, we consider a minimum
uncertainty Gaussian state as the system under inspection, which allows to
carry out an optimal simultaneous measurement. We show that the inclusion of
the free Hamiltonian induces a spreading on the probability density of the
measurement setting, which increases the value of the product of the variances
of the so-called retrodictive and predictive error operators, this is
equivalent to a reduction in the accuracy of the measurement.
Related papers
- Symmetry-protection Zeno phase transition in monitored lattice gauge theories [0.0]
We show the existence of a sharp transition, triggered by the measurement rate, between a protected gauge-theory regime and an irregular regime.
Our results shed light on the dissipative criticality of strongly-interacting, highly-constrained quantum systems.
arXiv Detail & Related papers (2024-05-28T18:18:06Z) - Equilibration of objective observables in a dynamical model of quantum measurements [0.0]
This paper builds on the Quantum Darwinism framework derived to explain the emergence of the classical world.
We establish a measurement error bound to quantify the probability an observer will obtain an incorrect measurement outcome.
Using this error bound, we show that the objectifying observables readily equilibrate on average under the set of Hamiltonians.
arXiv Detail & Related papers (2024-03-26T18:04:17Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - Finite resolution ancilla-assisted measurements of quantum work
distributions [77.34726150561087]
We consider an ancilla-assisted protocol measuring the work done on a quantum system driven by a time-dependent Hamiltonian.
We consider system Hamiltonians which both commute and do not commute at different times, finding corrections to fluctuation relations like the Jarzynski equality and the Crooks relation.
arXiv Detail & Related papers (2021-11-30T15:08:25Z) - Continuous Gaussian Measurements of the Free Boson CFT: A model for
Exactly Solvable and Detectable Measurement-Induced Dynamics [0.0]
We introduce a scenario of measurement-induced many body evolution, which possesses an exact analytical solution: bosonic measurements.
We consider an elementary model for quantum criticality, the free boson conformal field theory, and investigate in which way criticality is modified under measurements.
For each scenario, we discuss the impact of imperfect measurements, which reduce the purity of the wavefunction and are equivalent to Markovian decoherence.
arXiv Detail & Related papers (2021-08-09T18:00:04Z) - Hamiltonian Model for Fault Tolerant Singlet-Like Excitation: First
Principles Approach [0.0]
We investigate the reduced state of two qubits coupled to each other via a common heat bath of linear harmonics.
We search for evidence of fault-tolerant excited qubit states.
We emphasize the central role of the Lambshift as an agent responsible for fault tolerant excitations.
arXiv Detail & Related papers (2021-05-20T14:14:00Z) - Measurement, information, and disturbance in Hamiltonian mechanics [0.0]
Measurement in classical physics is examined as a process involving the joint evolution of object-system and measuring apparatus.
A model of measurement is proposed which lends itself to theoretical analysis using Hamiltonian mechanics and Bayesian probability.
The process of continuous measurement is then examined; yielding a novel pair of Liouville-like master equations.
arXiv Detail & Related papers (2021-04-05T06:09:28Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.