論文の概要: Inferring feature importance with uncertainties in high-dimensional data
- arxiv url: http://arxiv.org/abs/2109.00855v1
- Date: Thu, 2 Sep 2021 11:57:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 13:59:37.096144
- Title: Inferring feature importance with uncertainties in high-dimensional data
- Title(参考訳): 高次元データにおける不確実性を考慮した特徴推定
- Authors: P{\aa}l Vegard Johnsen, Inga Str\"umke, Signe Riemer-S{\o}rensen,
Andrew Thomas DeWand, Mette Langaas
- Abstract要約: 推定器における不確実性を含む個々の特徴の重要性を推定するためのShapley値に基づくフレームワークを提案する。
我々は最近発表されたSAGEの機能重要度尺度に基づいて構築し、木モデルの再サンプリングなしに推定できるサブSAGEを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating feature importance is a significant aspect of explaining
data-based models. Besides explaining the model itself, an equally relevant
question is which features are important in the underlying data generating
process. We present a Shapley value based framework for inferring the
importance of individual features, including uncertainty in the estimator. We
build upon the recently published feature importance measure of SAGE (Shapley
additive global importance) and introduce sub-SAGE which can be estimated
without resampling for tree-based models. We argue that the uncertainties can
be estimated from bootstrapping and demonstrate the approach for tree ensemble
methods. The framework is exemplified on synthetic data as well as
high-dimensional genomics data.
- Abstract(参考訳): 特徴量の推定は、データベースモデルを説明する上で重要な側面である。
モデル自体を説明することに加えて、どの機能が基盤となるデータ生成プロセスにおいて重要なのか、等しく関連する疑問がある。
推定器における不確実性を含む個々の特徴の重要性を推定するためのShapley値に基づくフレームワークを提案する。
我々は最近発表されたSAGE(Shapley additive global importance)の機能重要度尺度に基づいて構築し、木モデルの再サンプリングなしに推定できるサブSAGEを導入する。
我々は,ブートストラップ法から不確かさを推定し,ツリーアンサンブル法へのアプローチを示す。
この枠組みは、合成データと高次元ゲノミクスデータに基づいて例証されている。
関連論文リスト
- Accurate estimation of feature importance faithfulness for tree models [3.545940115969205]
我々は、PGI二乗と呼ぶ特徴ランク(または属性)の予測忠実度を摂動に基づく計量として考える。
PGI2乗に基づく木モデルの予測において重要となる特徴のランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-04-04T13:09:26Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Factor Importance Ranking and Selection using Total Indices [0.0]
要因の重要度は、特定の予測アルゴリズムに頼ることなく、機能の予測可能性を特徴づけるべきである。
本研究は,地球規模の感度分析から,予測可能性とソボ指標との等価性を示す。
ノイズデータから直接推定できる新しい一貫した推定器を導入する。
論文 参考訳(メタデータ) (2024-01-01T16:02:06Z) - The Inadequacy of Shapley Values for Explainability [0.685316573653194]
論文は、説明可能なAI(XAI)におけるShapley値の使用は、必ずしも予測のための特徴の相対的重要性に関する確実な誤解を招くだろうと論じている。
論文 参考訳(メタデータ) (2023-02-16T09:19:14Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Nonparametric Feature Impact and Importance [0.6123324869194193]
データ上で直接動作する部分依存曲線から導かれる特徴的影響と重要性の数学的定義を与える。
品質を評価するために、これらの定義によってランク付けされた特徴は、既存の特徴選択技術と競合することを示す。
論文 参考訳(メタデータ) (2020-06-08T17:07:35Z) - Feature Importance Estimation with Self-Attention Networks [0.0]
ブラックボックスニューラルネットワークモデルは、産業や科学で広く使われているが、理解と解釈が難しい。
近年,ニューラルネットワークモデルの内部動作に関する洞察を提供するアテンションメカニズムが導入されている。
本稿では、命題(タブラル)データから得られたモデルを説明する手段として、注目に基づくニューラルネットワーク機構を用いて特徴重要度を推定する。
論文 参考訳(メタデータ) (2020-02-11T15:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。