論文の概要: A review of Quantum Neural Networks: Methods, Models, Dilemma
- arxiv url: http://arxiv.org/abs/2109.01840v1
- Date: Sat, 4 Sep 2021 10:50:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 16:27:59.477387
- Title: A review of Quantum Neural Networks: Methods, Models, Dilemma
- Title(参考訳): 量子ニューラルネットワークの概観:方法,モデル,ジレンマ
- Authors: Renxin Zhao and Shi Wang
- Abstract要約: 量子コンピュータハードウェアの急速な開発により、QNNの実現のためのハードウェア基盤が確立された。
本稿では、実装方法、量子回路モデル、直面する困難という3つの部分から、過去6年間のQNNの開発について概観する。
- 参考スコア(独自算出の注目度): 1.1168121941015012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of quantum computer hardware has laid the hardware
foundation for the realization of QNN. Due to quantum properties, QNN shows
higher storage capacity and computational efficiency compared to its classical
counterparts. This article will review the development of QNN in the past six
years from three parts: implementation methods, quantum circuit models, and
difficulties faced. Among them, the first part, the implementation method,
mainly refers to some underlying algorithms and theoretical frameworks for
constructing QNN models, such as VQA. The second part introduces several
quantum circuit models of QNN, including QBM, QCVNN and so on. The third part
describes some of the main difficult problems currently encountered. In short,
this field is still in the exploratory stage, full of magic and practical
significance.
- Abstract(参考訳): 量子コンピュータハードウェアの急速な発展は、qnnの実現のためのハードウェアの基礎を築いた。
量子特性のため、QNNは従来のものよりも高いストレージ容量と計算効率を示す。
本稿では,実装手法,量子回路モデル,難易度という3つの部分から,過去6年間のqnnの開発について概説する。
そのうちの1つは実装手法であり、主にVQAのようなQNNモデルを構築するための基礎となるアルゴリズムや理論フレームワークを指す。
第2部では、QBM、QCVNNなど、QNNの量子回路モデルを紹介している。
第3部では,現在遭遇している大きな問題について説明している。
要するに、このフィールドはまだ探索段階であり、魔法と実用的重要性に満ちている。
関連論文リスト
- A Coverage-Guided Testing Framework for Quantum Neural Networks [1.7101498519540597]
量子ニューラルネットワーク(QNN)は、量子コンピューティングとニューラルネットワークを組み合わせて機械学習モデルを改善する。
本稿では,QNNの状態探索を体系的に評価するために,QNNを対象としたテストカバレッジ基準のセットであるQCovを提案する。
論文 参考訳(メタデータ) (2024-11-03T08:07:27Z) - QKAN: Quantum Kolmogorov-Arnold Networks [0.6597195879147557]
Kolmogorov-Arnold Networks (KAN)と呼ばれる新しいニューラルネットワークアーキテクチャが登場し、コルモゴロフ-Arnold表現定理の構成構造に着想を得た。
我々のQKANは、量子特異値変換を含む強力な量子線型代数ツールを利用して、ネットワークの端にパラメータ化活性化関数を適用する。
QKANはブロックエンコーディングに基づいており、本質的に直接量子入力に適している。
論文 参考訳(メタデータ) (2024-10-06T10:11:57Z) - Shedding Light on the Future: Exploring Quantum Neural Networks through Optics [3.1935899800030096]
量子ニューラルネットワーク(QNN)は、急速に発展する量子機械学習分野において、新興技術として重要な役割を果たす。
本稿では,QNNの概念とその物理的実現,特に量子光学に基づく実装について概説する。
論文 参考訳(メタデータ) (2024-09-04T08:49:57Z) - A Quantum Leaky Integrate-and-Fire Spiking Neuron and Network [0.0]
量子ニューロモルフィックコンピューティングのための新しいソフトウェアモデルを導入する。
量子スパイクニューラルネットワーク(QSNN)と量子スパイク畳み込みニューラルネットワーク(QSCNN)の構築において,これらのニューロンを構築ブロックとして利用する。
論文 参考訳(メタデータ) (2024-07-23T11:38:06Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - 3D Scalable Quantum Convolutional Neural Networks for Point Cloud Data
Processing in Classification Applications [10.90994913062223]
量子畳み込みニューラルネットワーク(QCNN)は、分類アプリケーションにおけるポイントクラウドデータ処理のために提案される。
分類アプリケーションにおけるポイントクラウドデータ処理のための3DスケーラブルQCNN(sQCNN-3D)を提案する。
論文 参考訳(メタデータ) (2022-10-18T10:14:03Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
本稿では,量子通信ネットワーク(QCN)の性能を物理インフォームド方式で解析する。
物理インフォームドアプローチの必要性を評価し,実践的なQCNの設計におけるその基本的な役割を解析する。
我々はQCNが量子技術の最先端を活用できる新しい物理インフォームドパフォーマンス指標と制御を同定する。
論文 参考訳(メタデータ) (2022-04-20T05:32:16Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。