論文の概要: 3D Scalable Quantum Convolutional Neural Networks for Point Cloud Data
Processing in Classification Applications
- arxiv url: http://arxiv.org/abs/2210.09728v1
- Date: Tue, 18 Oct 2022 10:14:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 15:51:39.460741
- Title: 3D Scalable Quantum Convolutional Neural Networks for Point Cloud Data
Processing in Classification Applications
- Title(参考訳): 分類分野におけるポイントクラウドデータ処理のための3次元スケーラブル量子畳み込みニューラルネットワーク
- Authors: Hankyul Baek, Won Joon Yun, and Joongheon Kim
- Abstract要約: 量子畳み込みニューラルネットワーク(QCNN)は、分類アプリケーションにおけるポイントクラウドデータ処理のために提案される。
分類アプリケーションにおけるポイントクラウドデータ処理のための3DスケーラブルQCNN(sQCNN-3D)を提案する。
- 参考スコア(独自算出の注目度): 10.90994913062223
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the beginning of the noisy intermediate-scale quantum (NISQ) era, a
quantum neural network (QNN) has recently emerged as a solution for several
specific problems that classical neural networks cannot solve. Moreover, a
quantum convolutional neural network (QCNN) is the quantum-version of CNN
because it can process high-dimensional vector inputs in contrast to QNN.
However, due to the nature of quantum computing, it is difficult to scale up
the QCNN to extract a sufficient number of features due to barren plateaus.
Motivated by this, a novel 3D scalable QCNN (sQCNN-3D) is proposed for point
cloud data processing in classification applications. Furthermore, reverse
fidelity training (RF-Train) is additionally considered on top of sQCNN-3D for
diversifying features with a limited number of qubits using the fidelity of
quantum computing. Our data-intensive performance evaluation verifies that the
proposed algorithm achieves desired performance.
- Abstract(参考訳): ノイズの多い中間スケール量子(NISQ)時代の始まりとして、量子ニューラルネットワーク(QNN)が、古典的ニューラルネットワークでは解決できないいくつかの特定の問題の解決策として最近登場した。
さらに、量子畳み込みニューラルネットワーク(QCNN)は、QNNとは対照的に高次元ベクトル入力を処理できるため、CNNの量子変換である。
しかし、量子コンピューティングの性質から、QCNNをスケールアップして、不毛な高原によって十分な数の特徴を抽出することは困難である。
分類アプリケーションにおけるポイントクラウドデータ処理のための3DスケーラブルQCNN(sQCNN-3D)を提案する。
さらに,SQCNN-3D上には,量子コンピューティングの忠実度を用いて,量子ビット数に制限のある特徴を多様化するための逆忠実度トレーニング(RF-Train)も考慮されている。
データ集約的な性能評価は,提案アルゴリズムが望ましい性能を達成することを検証する。
関連論文リスト
- Optimizing Quantum Convolutional Neural Network Architectures for Arbitrary Data Dimension [2.9396076967931526]
量子畳み込みニューラルネットワーク(QCNN)は量子機械学習において有望なアプローチである。
量子リソースの割り当てを最適化しながら任意の入力データ次元を処理できるQCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-28T02:25:12Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Scalable Quantum Convolutional Neural Networks [12.261689483681145]
我々は、スケーラブル量子畳み込みニューラルネットワーク(sQCNN)と呼ばれる量子ニューラルネットワーク(QCNN)の新バージョンを提案する。
さらに、QCの忠実度を用いて、sQCNNの性能を最大化する逆忠実度トレーニング(RF-Train)と呼ばれるsQCNNトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T02:07:00Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。