論文の概要: Interaction Models and Generalized Score Matching for Compositional Data
- arxiv url: http://arxiv.org/abs/2109.04671v1
- Date: Fri, 10 Sep 2021 05:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-13 13:20:29.880156
- Title: Interaction Models and Generalized Score Matching for Compositional Data
- Title(参考訳): 合成データの相互作用モデルと一般化スコアマッチング
- Authors: Shiqing Yu, Mathias Drton, Ali Shojaie
- Abstract要約: 本稿では, 確率単純度をベースとして, 対の相互作用の一般的なパターンに対応する指数関数型モデルを提案する。
特別の場合として、ディリクレ分布の族や、アッチソンの加法的ロジスティック正規分布がある。
提案手法の高次元解析により, 従来研究されていた全次元領域と同様に, シンプル領域を効率的に処理できることが示唆された。
- 参考スコア(独自算出の注目度): 9.797319790710713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applications such as the analysis of microbiome data have led to renewed
interest in statistical methods for compositional data, i.e., multivariate data
in the form of probability vectors that contain relative proportions. In
particular, there is considerable interest in modeling interactions among such
relative proportions. To this end we propose a class of exponential family
models that accommodate general patterns of pairwise interaction while being
supported on the probability simplex. Special cases include the family of
Dirichlet distributions as well as Aitchison's additive logistic normal
distributions. Generally, the distributions we consider have a density that
features a difficult to compute normalizing constant. To circumvent this issue,
we design effective estimation methods based on generalized versions of score
matching. A high-dimensional analysis of our estimation methods shows that the
simplex domain is handled as efficiently as previously studied full-dimensional
domains.
- Abstract(参考訳): マイクロバイオームデータの分析のような応用は、組成データ、すなわち相対比率を含む確率ベクトルの形での多変量データに対する統計手法への新たな関心をもたらした。
特に、そのような相対比の相互作用のモデル化にはかなりの関心がある。
そこで本研究では,確率的単純度をベースとして,対相互作用の一般的なパターンを満足する指数関数モデルを提案する。
特別の場合として、ディリクレ分布の族や、アッチソンの加法的ロジスティック正規分布がある。
一般に、我々が考える分布は正規化定数を計算するのが難しい密度を持つ。
この問題を回避するため,スコアマッチングの一般化版に基づく効果的な推定手法を考案する。
提案手法の高次元解析により, 従来研究されていた全次元領域と同様に, シンプル領域を効率的に扱うことを示す。
関連論文リスト
- Empirical Density Estimation based on Spline Quasi-Interpolation with
applications to Copulas clustering modeling [0.0]
密度推定は、様々な分野において、基礎となるデータの分布をモデル化し理解するための基礎的な手法である。
本稿では,擬似補間による密度の単変量近似を提案する。
提案アルゴリズムは人工データセットと実データセットで検証される。
論文 参考訳(メタデータ) (2024-02-18T11:49:38Z) - Beyond Normal: On the Evaluation of Mutual Information Estimators [52.85079110699378]
そこで本研究では,既知の地道的相互情報を用いて,多種多様な分布群を構築する方法について述べる。
本稿では,問題の難易度に適応した適切な推定器の選択方法について,実践者のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2023-06-19T17:26:34Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - A method to integrate and classify normal distributions [0.0]
我々は、任意のパラメータを持つ任意の次元における正規の任意の領域の確率を提供する結果とオープンソースソフトウェアを提示する。
自然界における物体の隠蔽やカモフラージュの検出といった視覚研究の応用を応用して,これらのツールを実証する。
論文 参考訳(メタデータ) (2020-12-23T05:45:41Z) - Flexible mean field variational inference using mixtures of
non-overlapping exponential families [6.599344783327053]
標準平均場変動推論を用いることで、疎性誘導前のモデルに対して妥当な結果が得られないことを示す。
拡散指数族と 0 の点質量の任意の混合が指数族を形成することを示す。
論文 参考訳(メタデータ) (2020-10-14T01:46:56Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。