論文の概要: Modular Neural Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2109.07359v1
- Date: Wed, 15 Sep 2021 15:13:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 18:36:03.285848
- Title: Modular Neural Ordinary Differential Equations
- Title(参考訳): モジュラーニューラル常微分方程式
- Authors: Max Zhu, Prof. P Lio, Jacob Moss
- Abstract要約: 本稿では、各力成分を異なるモジュールで学習するモジュラニューラルODEを提案する。
これらのモデルに物理的な事前情報を容易に組み込む方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The laws of physics have been written in the language of dif-ferential
equations for centuries. Neural Ordinary Differen-tial Equations (NODEs) are a
new machine learning architecture which allows these differential equations to
be learned from a dataset. These have been applied to classical dynamics
simulations in the form of Lagrangian Neural Net-works (LNNs) and Second Order
Neural Differential Equations (SONODEs). However, they either cannot represent
the most general equations of motion or lack interpretability. In this paper,
we propose Modular Neural ODEs, where each force component is learned with
separate modules. We show how physical priors can be easily incorporated into
these models. Through a number of experiments, we demonstrate these result in
better performance, are more interpretable, and add flexibility due to their
modularity.
- Abstract(参考訳): 物理学の法則は、何世紀にもわたって dif-ferential equation で書かれてきた。
neural ordinary differenten-tial equation(ノード)は、これらの微分方程式をデータセットから学習できる新しい機械学習アーキテクチャである。
これらは、Lagrangian Neural Net-works(LNN)とSecond Order Neural Differential Equations(SONODE)という形式での古典力学シミュレーションに適用されている。
しかし、それらは運動の最も一般的な方程式を表現できないか、解釈不可能である。
本稿では,各力成分を別々のモジュールで学習するモジュール型ニューラルネットワークodeを提案する。
これらのモデルに物理的な事前情報を組み込む方法を示す。
多くの実験を通じて、これらの結果がより優れたパフォーマンスをもたらし、より解釈しやすく、モジュール性によって柔軟性が増すことを実証した。
関連論文リスト
- Neural Fractional Differential Equations [2.812395851874055]
FDE(Fractional Differential Equations)は、科学や工学において複雑なシステムをモデル化するための重要なツールである。
我々は、FDEをデータのダイナミックスに調整する新しいディープニューラルネットワークアーキテクチャであるNeural FDEを提案する。
論文 参考訳(メタデータ) (2024-03-05T07:45:29Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - Pseudo-Hamiltonian neural networks for learning partial differential
equations [0.0]
Pseudo-Hamiltonian Neural Network (PHNN)は、最近、通常の微分方程式でモデル化できる力学系を学ぶために導入された。
本稿では,この手法を偏微分方程式に拡張する。
得られたモデルは、保存、散逸、外部力を表す用語をモデル化する最大3つのニューラルネットワークと、学習または入力として与えられる個別の畳み込み演算子から構成される。
論文 参考訳(メタデータ) (2023-04-27T17:46:00Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - On Neural Differential Equations [13.503274710499971]
特に、ニューラル微分方程式(NDE)は、ニューラルネットワークと微分方程式が同じコインの両側であることを示す。
NDEは生成問題、動的システム、時系列を扱うのに適している。
NDEは高容量関数近似、モデル空間への強い先行性、不規則なデータを扱う能力、メモリ効率、そして両サイドで利用可能な豊富な理論を提供する。
論文 参考訳(メタデータ) (2022-02-04T23:32:29Z) - On Second Order Behaviour in Augmented Neural ODEs [69.8070643951126]
第二次ニューラルノード(ソノド)を考える
副次感度法がSONODEにどのように拡張できるかを示す。
我々は拡張NODE(Augmented NODEs)のより広範なクラスの理論的理解を拡張した。
論文 参考訳(メタデータ) (2020-06-12T14:25:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。