論文の概要: Naming Schema for a Human Brain-Scale Neural Network
- arxiv url: http://arxiv.org/abs/2109.10951v1
- Date: Wed, 22 Sep 2021 18:14:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 01:11:15.333291
- Title: Naming Schema for a Human Brain-Scale Neural Network
- Title(参考訳): 脳規模のニューラルネットワークのためのナーミングスキーマ
- Authors: Morgan Schaefer, Lauren Michelin, Jeremy Kepner
- Abstract要約: 人工ニューロンのグループは、将来の研究のために、小さな領域で特別にラベル付けすることができる。
ディープニューラルネットワークはますます大きくなり、疎結合になり、ストレージと計算のコストを削減した大規模ニューラルネットワークのストレージが可能になる。
- 参考スコア(独自算出の注目度): 2.76240219662896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have become increasingly large and sparse, allowing for
the storage of large-scale neural networks with decreased costs of storage and
computation. Storage of a neural network with as many connections as the human
brain is possible with current versions of the high-performance Apache Accumulo
database and the Distributed Dimensional Data Model (D4M) software. Neural
networks of such large scale may be of particular interest to scientists within
the human brain Connectome community. To aid in research and understanding of
artificial neural networks that parallel existing neural networks like the
brain, a naming schema can be developed to label groups of neurons in the
artificial network that parallel those in the brain. Groups of artificial
neurons are able to be specifically labeled in small regions for future study.
- Abstract(参考訳): ディープニューラルネットワークはますます大きくなり、疎結合になり、ストレージと計算のコストを削減した大規模ニューラルネットワークのストレージが可能になる。
高性能なApache Accumuloデータベースと分散次元データモデル(D4M)ソフトウェアで、人間の脳と同じくらい多くのコネクションを持つニューラルネットワークのストレージが可能になる。
このような大規模なニューラルネットワークは、人間の脳コネクトームコミュニティ内の科学者にとって特に関心がある。
脳のような既存のニューラルネットワークを並列化する人工ニューラルネットワークの研究と理解を支援するために、脳内のニューロンを並列化する人工ネットワーク内のニューロン群をラベル付けるための命名スキーマを開発することができる。
人工ニューロン群は、将来の研究のために小さな領域に特異的にラベル付けすることができる。
関連論文リスト
- Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Connected Hidden Neurons (CHNNet): An Artificial Neural Network for
Rapid Convergence [0.6218519716921521]
我々は,同じ隠蔽層に隠されたニューロンが相互に相互に結合し,急速に収束する,より堅牢な人工知能ニューラルネットワークモデルを提案する。
深層ネットワークにおける提案モデルの実験研究により,従来のフィードフォワードニューラルネットワークと比較して,モデルが顕著に収束率を上昇させることを示した。
論文 参考訳(メタデータ) (2023-05-17T14:00:38Z) - Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks [20.99799416963467]
ヒトの脳では、神経の多様性はあらゆる生物学的知的行動に有効である。
本稿では,まず,生物ニューロンの多様性と情報伝達・処理の特徴について論じる。
論文 参考訳(メタデータ) (2023-01-23T02:23:45Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
本研究では、生物ニューロンのシミュレータとしてのANNの概念を検討する。
また、なぜ脳のような知能が必要なのか、そしてそれが計算フレームワークとどのように異なるのかを探求する。
論文 参考訳(メタデータ) (2020-12-25T05:56:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。