論文の概要: Convolutional Shapelet Transform: A new approach for time series
shapelets
- arxiv url: http://arxiv.org/abs/2109.13514v1
- Date: Tue, 28 Sep 2021 06:30:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 00:09:31.797008
- Title: Convolutional Shapelet Transform: A new approach for time series
shapelets
- Title(参考訳): 畳み込み形形状変換:時系列形状変換の新しいアプローチ
- Authors: Antoine Guillaume, Christel Vrain, Elloumi Wael
- Abstract要約: 本稿では,ダイレーションの概念を含む時系列シェイプレットの新たな定式化と,畳み込みカーネルに基づくシェープレット抽出手法を提案する。
提案手法は,シェープレットアルゴリズムの最先端性を向上し,畳み込みカーネルによる結果の解釈に利用できることを示す。
- 参考スコア(独自算出の注目度): 1.160208922584163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shapelet-based algorithms are widely used for time series classification
because of their ease of interpretation, but they are currently outperformed,
notably by methods using convolutional kernels, capable of reaching
state-of-the-art performance while being highly scalable. We present a new
formulation of time series shapelets including the notion of dilation, and a
shapelet extraction method based on convolutional kernels, which is able to
target the discriminant information identified by convolutional kernels.
Experiments performed on 108 datasets show that our method improves on the
state-of-the-art for shapelet algorithms, and we show that it can be used to
interpret results from convolutional kernels.
- Abstract(参考訳): シェープレットベースのアルゴリズムは解釈の容易さから時系列分類に広く用いられているが、現在では特に畳み込みカーネルを用いた手法により性能が優れており、高いスケーラビリティを保ちながら最先端のパフォーマンスを達成できる。
本稿では,拡張の概念を含む時系列シェープレットの新しい定式化と,畳み込みカーネルによって識別される識別情報を対象とする畳み込みカーネルに基づくシェープレット抽出法を提案する。
108個のデータセットで行った実験から,本手法はシェープレットアルゴリズムの最先端性を向上し,畳み込みカーネルによる結果の解釈に有効であることが示された。
関連論文リスト
- Correlating Time Series with Interpretable Convolutional Kernels [18.77493756204539]
本研究では,時系列データにおける畳み込みカーネル学習の問題に対処する。
テンソル計算を用いて、畳み込みカーネル学習問題をテンソルの形で再構成する。
本研究は時系列データから畳み込みカーネルを自動的に学習するための洞察力のある基礎を築いた。
論文 参考訳(メタデータ) (2024-09-02T16:29:21Z) - Fast and Scalable Multi-Kernel Encoder Classifier [4.178980693837599]
提案手法は,高速でスケーラブルなカーネルマトリックスの埋め込みを容易にするとともに,複数のカーネルをシームレスに統合して学習プロセスを向上する。
我々の理論解析は、確率変数を用いたこのアプローチの集団レベルの特徴付けを提供する。
論文 参考訳(メタデータ) (2024-06-04T10:34:40Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
ニューラルな暗黙表現から表面メッシュを抽出する新しい微分可能なメッシュアルゴリズムを提案する。
本手法は,通常のテッセルレーションパターンと,既存の手法に比べて三角形面の少ないメッシュを生成する。
論文 参考訳(メタデータ) (2022-10-05T16:52:25Z) - Nonparametric Factor Trajectory Learning for Dynamic Tensor
Decomposition [20.55025648415664]
動的テンソル分解(NONFAT)のためのNON FActor Trajectory Learningを提案する。
我々は第2レベルのGPを用いてエントリ値をサンプリングし、エンティティ間の時間的関係をキャプチャする。
実世界のいくつかの応用において,本手法の利点を示した。
論文 参考訳(メタデータ) (2022-07-06T05:33:00Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
ディープラーニングに基づくアプローチの最近の発展は、DiffIRのサブ秒間実行を実現している。
本稿では,中間定常速度場を機能的に構成する簡易な反復スキームを提案する。
次に、任意の順序の正規化項を用いて、これらの速度場に滑らかさを課す凸最適化モデルを提案する。
論文 参考訳(メタデータ) (2021-09-26T19:56:45Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior [26.52863547394537]
本稿では,カーネル選択のスパーシティをホースシュープリアーで処理することにより,カーネル構成を学習するための新しい確率論的アルゴリズムを提案する。
本モデルは,計算時間を大幅に削減した時系列特性をキャプチャし,実世界のデータセット上での競合回帰性能を有する。
論文 参考訳(メタデータ) (2020-12-21T13:41:15Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z) - FKAConv: Feature-Kernel Alignment for Point Cloud Convolution [75.85619090748939]
多数の点畳み込み法を関連づけ解析するための定式化を提供する。
また、幾何学のないカーネル重み付けの推定を分離する独自の畳み込み変種も提案する。
分類とセマンティックセグメンテーションのベンチマークで競合する結果を示す。
論文 参考訳(メタデータ) (2020-04-09T10:12:45Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。