論文の概要: Row-clustering of a Point Process-valued Matrix
- arxiv url: http://arxiv.org/abs/2110.01207v1
- Date: Mon, 4 Oct 2021 06:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:42:53.602333
- Title: Row-clustering of a Point Process-valued Matrix
- Title(参考訳): ポイントプロセス評価マトリックスのロウクラスタリング
- Authors: Lihao Yin and Ganggang Xu and Huiyan Sang and Yongtao Guan
- Abstract要約: 本稿では,このような行列の対数ガウスコックス過程とクラスタ列をマークした行列について検討する。
点過程の関数主成分分析(FPCA)と組み合わせた半パラメトリック期待解(ES)アルゴリズムをモデル推定のために提案する。
提案手法の有効性をシミュレーション研究と実データ解析により実証した。
- 参考スコア(独自算出の注目度): 2.0391237204597363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured point process data harvested from various platforms poses new
challenges to the machine learning community. By imposing a matrix structure to
repeatedly observed marked point processes, we propose a novel mixture model of
multi-level marked point processes for identifying potential heterogeneity in
the observed data. Specifically, we study a matrix whose entries are marked
log-Gaussian Cox processes and cluster rows of such a matrix. An efficient
semi-parametric Expectation-Solution (ES) algorithm combined with functional
principal component analysis (FPCA) of point processes is proposed for model
estimation. The effectiveness of the proposed framework is demonstrated through
simulation studies and a real data analysis.
- Abstract(参考訳): さまざまなプラットフォームから収集された構造化ポイントプロセスデータは、機械学習コミュニティに新たな課題をもたらす。
繰り返し観測されるマーク点過程に行列構造を付与することにより、観測データの潜在的な不均一性を特定するための多レベルマーク点過程の混合モデルを提案する。
具体的には,このような行列の対数ガウスコックス過程とクラスタ列をマークした行列について検討する。
点過程の関数主成分分析(FPCA)と組み合わせた半パラメトリック期待解(ES)アルゴリズムをモデル推定のために提案する。
提案手法の有効性をシミュレーション研究と実データ解析により実証した。
関連論文リスト
- Graph Structure Inference with BAM: Introducing the Bilinear Attention
Mechanism [31.99564199048314]
本稿では,教師付きグラフ構造学習のためのニューラルネットワークモデルを提案する。
モデルは可変形状および結合された入力データで訓練される。
本手法は, 線形および多種多様な非線形依存関係に対して, 堅牢な一般化性を示す。
論文 参考訳(メタデータ) (2024-02-12T15:48:58Z) - Fr\'echet Statistics Based Change Point Detection in Multivariate Hawkes
Process [17.72531431604197]
本稿では,Frechet統計を用いた因果ネットワークにおける変化点検出のための新しい手法を提案する。
提案手法は点過程を重なり合うウィンドウに分割し,各ウィンドウのカーネル行列を推定し,符号付きラプラシアンを再構成する。
論文 参考訳(メタデータ) (2023-08-13T13:46:38Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
我々はロバスト成分分析のためのアルゴリズムを設計する(A)
行列を低主行列とスパース主行列の和に分解する。
論文 参考訳(メタデータ) (2023-07-12T03:48:26Z) - Non-Negative Matrix Factorization with Scale Data Structure Preservation [23.31865419578237]
本稿では,データ表現と次元縮小のために設計された非負行列分解法に属するモデルについて述べる。
この考え方は、NMFコスト関数に、元のデータポイントと変換されたデータポイントのペアの類似度行列のスケール関係を課すペナルティ項を追加することである。
提案したクラスタリングアルゴリズムは,既存のNMFベースのアルゴリズムや,実際のデータセットに適用した場合の多様体学習ベースのアルゴリズムと比較される。
論文 参考訳(メタデータ) (2022-09-22T09:32:18Z) - Semi-Supervised Clustering via Dynamic Graph Structure Learning [12.687613487964088]
既存の半教師付きグラフベースのクラスタリング手法は、アフィニティ行列の精細化や、データポイントの低次元表現の制約によって、監督情報を利用する。
半教師付きグラフクラスタリングのための動的グラフ学習法を提案する。
論文 参考訳(メタデータ) (2022-09-06T14:05:31Z) - CCP: Correlated Clustering and Projection for Dimensionality Reduction [5.992724190105578]
Correlated Clustering and Projectionは、マトリックスを解決する必要のない、新しいデータドメイン戦略を提供する。
CCPは、高次元の機能を相関クラスタに分割し、各クラスタの相関した機能を1次元の表現に分割する。
提案手法は、さまざまな機械学習アルゴリズムに関連するベンチマークデータセットを用いて検証される。
論文 参考訳(メタデータ) (2022-06-08T23:14:44Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Probabilistic Simplex Component Analysis [66.30587591100566]
PRISMは、データ循環記述のシンプルさの頂点をデータから識別する確率論的シンプルコンポーネント分析手法である。
この問題には多様な応用があり、最も注目すべきはリモートセンシングにおけるハイパースペクトルアンミックスと機械学習における非負行列分解である。
論文 参考訳(メタデータ) (2021-03-18T05:39:00Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。