論文の概要: Extended dynamic mode decomposition with dictionary learning using
neural ordinary differential equations
- arxiv url: http://arxiv.org/abs/2110.01450v1
- Date: Fri, 1 Oct 2021 06:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-07 07:44:52.872934
- Title: Extended dynamic mode decomposition with dictionary learning using
neural ordinary differential equations
- Title(参考訳): ニューラル常微分方程式を用いた辞書学習による拡張動的モード分解
- Authors: Hiroaki Terao, Sho Shirasaka and Hideyuki Suzuki
- Abstract要約: NODEを用いた拡張動的モード分解を行うアルゴリズムを提案する。
数値実験により,提案手法のパラメータ効率の優位性を示す。
- 参考スコア(独自算出の注目度): 0.8701566919381223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlinear phenomena can be analyzed via linear techniques using
operator-theoretic approaches. Data-driven method called the extended dynamic
mode decomposition (EDMD) and its variants, which approximate the Koopman
operator associated with the nonlinear phenomena, have been rapidly developing
by incorporating machine learning methods. Neural ordinary differential
equations (NODEs), which are a neural network equipped with a continuum of
layers, and have high parameter and memory efficiencies, have been proposed. In
this paper, we propose an algorithm to perform EDMD using NODEs. NODEs are used
to find a parameter-efficient dictionary which provides a good
finite-dimensional approximation of the Koopman operator. We show the
superiority of the parameter efficiency of the proposed method through
numerical experiments.
- Abstract(参考訳): 非線形現象は作用素理論のアプローチを用いて線形手法で解析することができる。
非線形現象に付随するクープマン作用素を近似した拡張動的モード分解法(EDMD)とその変種は,機械学習を応用して急速に発展してきた。
階層の連続体を持ち、パラメータとメモリ効率が高いニューラルネットワークであるニューラル常微分方程式(ノード)が提案されている。
本論文では,NODEを用いてEDMDを実行するアルゴリズムを提案する。
NODE は、クープマン作用素のよい有限次元近似を提供するパラメータ係数辞書を見つけるために用いられる。
数値実験により,提案手法のパラメータ効率が優れていることを示す。
関連論文リスト
- On the relationship between Koopman operator approximations and neural ordinary differential equations for data-driven time-evolution predictions [0.0]
辞書学習による拡張動的モード分解(EDMD-DL)は、状態空間上の非線形離散時間フローマップのニューラルネットワーク表現と等価であることを示す。
それぞれのモデル構造と訓練手順の異なる側面を組み合わせることで,数種類のニューラル常微分方程式(ODE)とEDMD-DLを実装した。
ロレンツ系におけるカオス力学の数値実験と乱流せん断流れの9モードモデルを用いてこれらの手法を評価する。
論文 参考訳(メタデータ) (2024-11-20T00:18:46Z) - Accelerating Fractional PINNs using Operational Matrices of Derivative [0.24578723416255746]
本稿では,分数次物理学情報ニューラルネットワーク(fPINN)の学習を高速化する新しい演算行列法を提案する。
提案手法では、カプトー型分数微分問題において、0alpha1$での分数導関数の高速な計算を容易にする。
提案手法の有効性は,遅延微分方程式 (DDE) や微分代数方程式 (DAE) など,様々な微分方程式にまたがって検証される。
論文 参考訳(メタデータ) (2024-01-25T11:00:19Z) - Neural Ordinary Differential Equations for Nonlinear System
Identification [0.9864260997723973]
本研究では,NODEの性能をニューラル状態空間モデルと古典線形システム同定法と比較する。
実験の結果,NODEはベンチマーク手法に比べて精度を桁違いに向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-28T22:25:53Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
機械学習と辞書ベースの学習を数値解析ツールと組み合わせ,微分方程式の制御を探索する。
我々は、サンプリング体制を超えてよりよく一般化しやすい解釈可能で準同型モデルを得る。
生物ネットワークに通常現れる有理非線形性を含む支配方程式の拡張について論じる。
論文 参考訳(メタデータ) (2021-05-11T08:46:51Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。