論文の概要: Geometric and holonomic quantum computation
- arxiv url: http://arxiv.org/abs/2110.03602v3
- Date: Thu, 23 Mar 2023 14:44:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 19:05:09.590446
- Title: Geometric and holonomic quantum computation
- Title(参考訳): 幾何学的およびホロノミック量子計算
- Authors: Jiang Zhang, Thi Ha Kyaw, Stefan Filipp, Leong-Chuan Kwek, Erik
Sj\"oqvist, Dianmin Tong
- Abstract要約: 幾何位相と量子ホロノミーに基づく量子ゲートは、ある種のエラーに対するレジリエンスを内蔵している。
このレビューは、幾何学的およびホロノミック量子ゲートを構築するための理論的および実験的進歩の概要と、このトピックの紹介を提供する。
- 参考スコア(独自算出の注目度): 1.4644151041375417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric and holonomic quantum computation utilizes intrinsic geometric
properties of quantum-mechanical state spaces to realize quantum logic gates.
Since both geometric phases and quantum holonomies are global quantities
depending only on the evolution paths of quantum systems, quantum gates based
on them possess built-in resilience to certain kinds of errors. This review
provides an introduction to the topic as well as gives an overview of the
theoretical and experimental progress for constructing geometric and holonomic
quantum gates and how to combine them with other error-resistant techniques.
- Abstract(参考訳): 幾何学的およびホロノミック量子計算は、量子力学状態空間の固有の幾何学的性質を利用して量子論理ゲートを実現する。
幾何学的位相と量子ホロノミーの両方が量子系の進化経路にのみ依存する大域的な量であるため、量子ゲートはある種のエラーに対するレジリエンスを内蔵している。
このレビューでは、幾何学的およびホロノミックな量子ゲートの構築に関する理論的および実験的進展の概要と、これらを他のエラー耐性技術と組み合わせる方法について紹介する。
関連論文リスト
- Direct Probe of Topology and Geometry of Quantum States on IBM Q [2.7801206308522417]
量子幾何テンソル(QGT)の密度行列形式は、量子回路上のパウリ作用素の測定から明示的に再構成可能であることを示す。
我々は,IBM量子コンピュータに適した2つのアルゴリズムを提案し,直接QGTを探索する。
IBM Qから得られた明示的な結果として、チャーン絶縁体モデルを示し分析する。
論文 参考訳(メタデータ) (2024-03-21T09:18:16Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
シリコン-ゲルマニウムヘテロ構造におけるゲート定義量子ドットは、量子計算とシミュレーションのための魅力的なプラットフォームとなっている。
ひずみゲルマニウム二重量子井戸におけるゲート定義垂直2重量子ドットの動作を実証する。
課題と機会を議論し、量子コンピューティングと量子シミュレーションの潜在的な応用について概説する。
論文 参考訳(メタデータ) (2023-05-23T13:42:36Z) - Generalized quantum geometric tensor for excited states using the path
integral approach [0.0]
量子幾何学テンソルは物理系のパラメータ空間幾何学を符号化する。
まず、基底状態と励起状態の両方を扱うことができる経路積分形式論における量子幾何学的テンソルの定式化を提供する。
次に、量子幾何テンソルを一般化して、システムパラメータと位相空間座標のバリエーションを組み込む。
論文 参考訳(メタデータ) (2023-05-19T08:50:46Z) - Quantum Information Dimension and Geometric Entropy [0.0]
Renyiの情報理論に触発された2つの解析ツールを導入し、幾何学量子状態の基本的性質を特徴づけ、定量化する。
我々は、それらの古典的定義、情報理論的意味、物理的解釈を振り返り、幾何学的アプローチを通じて量子システムに適用する。
論文 参考訳(メタデータ) (2021-11-11T18:40:49Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Relating the topology of Dirac Hamiltonians to quantum geometry: When
the quantum metric dictates Chern numbers and winding numbers [0.0]
我々は、量子計量とジェネリック・ディラック・ハミルトン多様体の位相不変量との関係を確立する。
トポロジカル指標は、量子計量によって決定される量子体積によって境界づけられていることを示す。
この研究は、量子工学系の幅広いクラスにおける探索されていないトポロジカル応答とメトロジーの応用を示唆している。
論文 参考訳(メタデータ) (2021-06-01T21:10:48Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
普遍量子コンピュータ上で$textU(k)$ Yang-Mills理論をシミュレートするための新しいフレームワークを提案する。
本稿では,ヤン・ミルズ理論の静的特性と実時間ダイナミクスの計算への応用について論じる。
論文 参考訳(メタデータ) (2020-11-12T18:49:11Z) - Quantum simulation of quantum field theories as quantum chemistry [9.208624182273288]
コンフォーマル・トランケーション(英: Conformal truncation)は、一般的な強結合量子場理論を解くための強力な数値法である。
量子計算は格子近似の基本的な物理を理解するのに役立つだけでなく、直接量子場理論の手法をシミュレートすることも示している。
論文 参考訳(メタデータ) (2020-04-28T01:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。