Style-based quantum generative adversarial networks for Monte Carlo
events
- URL: http://arxiv.org/abs/2110.06933v1
- Date: Wed, 13 Oct 2021 18:00:01 GMT
- Title: Style-based quantum generative adversarial networks for Monte Carlo
events
- Authors: Carlos Bravo-Prieto, Julien Baglio, Marco C\`e, Anthony Francis,
Dorota M. Grabowska, Stefano Carrazza
- Abstract summary: We propose and assess an alternative quantum generator architecture in the context of generative adversarial learning for Monte Carlo event generation.
We validate this methodology by implementing the quantum network on artificial data generated from known underlying distributions.
The network is then applied to Monte Carlo-generated datasets of specific LHC scattering processes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose and assess an alternative quantum generator architecture in the
context of generative adversarial learning for Monte Carlo event generation,
used to simulate particle physics processes at the Large Hadron Collider (LHC).
We validate this methodology by implementing the quantum network on artificial
data generated from known underlying distributions. The network is then applied
to Monte Carlo-generated datasets of specific LHC scattering processes. The new
quantum generator architecture leads to an improvement in state-of-the-art
implementations while maintaining shallow-depth networks. Moreover, the quantum
generator successfully learns the underlying distribution functions even if
trained with small training sample sets; this is particularly interesting for
data augmentation applications. We deploy this novel methodology on two
different quantum hardware architectures, trapped-ion and superconducting
technologies, to test its hardware-independent viability.
Related papers
- LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [7.945302052915863]
A potential application of quantum machine learning is to harness the power of quantum computers for generating classical data.
We propose LatentQGAN, a novel quantum model that uses a hybrid quantum-classical GAN coupled with an autoencoder.
arXiv Detail & Related papers (2024-09-22T23:18:06Z) - Quantum Federated Learning for Distributed Quantum Networks [9.766446130011706]
We propose a quantum federated learning for distributed quantum networks by utilizing interesting characteristics of quantum mechanics.
A quantum gradient descent algorithm is provided to help clients in the distributed quantum networks to train local models.
A quantum secure multi-party computation protocol is designed, which utilizes the Chinese residual theorem.
arXiv Detail & Related papers (2022-12-25T14:37:23Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Quantum Generative Adversarial Networks in a Continuous-Variable
Architecture to Simulate High Energy Physics Detectors [0.0]
We introduce and analyze a new prototype of quantum GAN (qGAN) employed in continuous-variable quantum computing.
Two CV qGAN models with a quantum and a classical discriminator have been tested to reproduce calorimeter outputs in a reduced size.
arXiv Detail & Related papers (2021-01-26T23:33:14Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Realizing a quantum generative adversarial network using a programmable
superconducting processor [17.3986929818418]
We report an experimental implementation of a quantum generative adversarial network (QGAN) using a programmable superconducting processor.
Our implementation is promising to scale up to noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2020-09-27T12:09:33Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z) - Noise robustness and experimental demonstration of a quantum generative
adversarial network for continuous distributions [0.5249805590164901]
We numerically simulate the noisy hybrid quantum generative adversarial networks (HQGANs) to learn continuous probability distributions.
We also investigate the effect of different parameters on the training time to reduce the computational scaling of the algorithm.
Our results pave the way for experimental exploration of different quantum machine learning algorithms on noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2020-06-02T23:14:45Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.