論文の概要: A Survey on Legal Question Answering Systems
- arxiv url: http://arxiv.org/abs/2110.07333v1
- Date: Tue, 12 Oct 2021 17:51:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 12:51:40.741535
- Title: A Survey on Legal Question Answering Systems
- Title(参考訳): 法的質問応答システムに関する調査研究
- Authors: Jorge Martinez-Gil
- Abstract要約: 法律専門家は、地域、地域、国際法に関する情報の爆発により、よりコストがかかり、時間がかかり、エラーが発生しやすいと考えている。
研究コミュニティは、法的問題に対する自動応答を生成できるシステムが、日常生活における多くの実践的影響に大きく影響することに同意している。
これは主に、質問回答システムによって、大量の法的リソースを自動的に処理して、質問や疑念に数秒で答えることができるためである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many legal professionals think that the explosion of information about local,
regional, national, and international legislation makes their practice more
costly, time-consuming, and even error-prone. The two main reasons for this are
that most legislation is usually unstructured, and the tremendous amount and
pace with which laws are released causes information overload in their daily
tasks. In the case of the legal domain, the research community agrees that a
system allowing to generate automatic responses to legal questions could
substantially impact many practical implications in daily activities. The
degree of usefulness is such that even a semi-automatic solution could
significantly help to reduce the workload to be faced. This is mainly because a
Question Answering system could be able to automatically process a massive
amount of legal resources to answer a question or doubt in seconds, which means
that it could save resources in the form of effort, money, and time to many
professionals in the legal sector. In this work, we quantitatively and
qualitatively survey the solutions that currently exist to meet this challenge.
- Abstract(参考訳): 多くの法律専門家は、地域、地域、国家、国際法に関する情報の爆発により、彼らの行為はよりコストがかかり、時間もかかり、エラーを起こしてしまうと考えている。
この2つの主な理由は、ほとんどの法律は非構造化であり、法が公表される膨大な量とペースが日々の業務に情報過負荷を引き起こすためである。
法的領域の場合、研究コミュニティは、法的問題に対する自動応答を生成するシステムが日々の業務における多くの実践的影響に大きく影響することに同意している。
有用性の度合いは、半自動的なソリューションでさえ、直面するワークロードを減らすのに大いに役立つ。
これは主に、質問応答システムが大量の法的リソースを自動的に処理して、質問や疑念に数秒で答えることができるためであり、つまり、法的な分野の多くの専門家にとって、労力、お金、時間という形でリソースを節約することができる。
本研究では,この課題に対応するために現在存在する解決策を定量的かつ質的に調査する。
関連論文リスト
- DeliLaw: A Chinese Legal Counselling System Based on a Large Language Model [16.63238943983347]
DeliLawは、大きな言語モデルに基づく中国の法律カウンセリングシステムである。
ユーザーはDeliLawシステム上で、専門家の法的質問や法的記事の検索、関連する判断事例などを対話モードで参照することができる。
論文 参考訳(メタデータ) (2024-08-01T07:54:52Z) - LeKUBE: A Legal Knowledge Update BEnchmark [30.62956609611883]
LLM(Large Language Models)の法的な知識をどう更新するかは、実際重要な研究課題となっている。
知識更新手法を評価するための既存のベンチマークは、主にオープンドメイン向けに設計されている。
法定LLMの知識更新手法を5次元にわたって評価する法定知識更新ベンチマーク(LeKUBE)を導入する。
論文 参考訳(メタデータ) (2024-07-19T10:40:10Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - The Ethics of Automating Legal Actors [58.81546227716182]
我々は、裁判官の役割の自動化は、特に一般的な法体系において、難しい倫理的課題を提起すると主張している。
我々の主張は、単に法律を適用するのではなく、法律を積極的に形成する際の裁判官の社会的役割から従う。
モデルが人間レベルの能力を達成できたとしても、法的プロセスの自動化に固有の倫理的懸念は残るだろう。
論文 参考訳(メタデータ) (2023-12-01T13:48:46Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - Interpretable Long-Form Legal Question Answering with
Retrieval-Augmented Large Language Models [10.834755282333589]
長文の法的問合せデータセットは、専門家によるフランス語の法的質問1,868件からなる。
実験結果から,自動評価指標について有望な性能を示した。
LLeQAは、専門家によって注釈付けされた唯一の包括的なロングフォームLQAデータセットの1つであり、重要な現実世界の問題を解決するために研究を加速するだけでなく、特殊な領域におけるNLPモデルを評価するための厳密なベンチマークとしても機能する可能性がある。
論文 参考訳(メタデータ) (2023-09-29T08:23:19Z) - NeCo@ALQAC 2023: Legal Domain Knowledge Acquisition for Low-Resource
Languages through Data Enrichment [2.441072488254427]
本稿では,ベトナムのテキスト処理タスクに対するNeCo Teamのソリューションを,ALQAC 2023(Automated Legal Question Answering Competition 2023)で紹介する。
法的な文書検索タスクでは,類似度ランキングと深層学習モデルを組み合わせた手法が採用されているが,第2の課題では,異なる質問タイプを扱うための適応的手法が提案されている。
提案手法は, 競争の両課題において, 法的分野における質問応答システムの潜在的メリットと有効性を示す, 卓越した結果を達成している。
論文 参考訳(メタデータ) (2023-09-11T14:43:45Z) - Exploring the State of the Art in Legal QA Systems [20.178251855026684]
質問応答システム(QA)は、人間の言語で質問された質問に対する回答を生成するように設計されている。
QAには、カスタマーサービス、教育、研究、言語間コミュニケーションなど、さまざまな実践的応用がある。
法分野における質問応答のための14のベンチマークデータセットをレビューする包括的調査を提供する。
論文 参考訳(メタデータ) (2023-04-13T15:48:01Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。