論文の概要: Keep it Tighter -- A Story on Analytical Mean Embeddings
- arxiv url: http://arxiv.org/abs/2110.09516v2
- Date: Fri, 15 Nov 2024 20:15:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:30:25.565706
- Title: Keep it Tighter -- A Story on Analytical Mean Embeddings
- Title(参考訳): keep it Tighter -- A Story on Analytical Mean Embeddings
- Authors: Linda Chamakh, Zoltan Szabo,
- Abstract要約: カーネル技術は、データサイエンスにおいて最も人気があり柔軟なアプローチの一つである。
平均埋め込みは、最大平均不一致(MMD)と呼ばれる分岐測度をもたらす。
本稿では,基礎となる分布の1つの平均埋め込みが解析的に利用可能である場合のMDD推定の問題に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.6445605125467574
- License:
- Abstract: Kernel techniques are among the most popular and flexible approaches in data science allowing to represent probability measures without loss of information under mild conditions. The resulting mapping called mean embedding gives rise to a divergence measure referred to as maximum mean discrepancy (MMD) with existing quadratic-time estimators (w.r.t. the sample size) and known convergence properties for bounded kernels. In this paper we focus on the problem of MMD estimation when the mean embedding of one of the underlying distributions is available analytically. Particularly, we consider distributions on the real line (motivated by financial applications) and prove tighter concentration for the proposed estimator under this semi-explicit setting; we also extend the result to the case of unbounded (exponential) kernel with minimax-optimal lower bounds. We demonstrate the efficiency of our approach beyond synthetic example in three real-world examples relying on one-dimensional random variables: index replication and calibration on loss-given-default ratios and on S&P 500 data.
- Abstract(参考訳): カーネル技術は、温和な条件下で情報を失うことなく確率測度を表現できるように、データサイエンスにおいて最も人気があり柔軟なアプローチの一つである。
平均埋め込みと呼ばれる結果として得られる写像は、既存の二次時間推定器 (w.r.t. サンプルサイズ) と有界核に対する既知の収束特性を持つ最大平均誤差 (MMD) と呼ばれる分岐測度をもたらす。
本稿では,基礎となる分布の1つの平均埋め込みが解析的に利用可能である場合のMDD推定の問題に焦点をあてる。
特に、実数直線上の分布(金融応用によって動機づけられた)を考察し、この半明示的な設定の下で提案された推定器に対してより厳密な濃度を証明し、その結果を最小限の最適下界を持つ非有界(指数)カーネルの場合にまで拡張する。
我々は1次元の確率変数に依存する実世界の3つの実例(損失-ギブン-デフォルト比とS&P 500データ)において,本手法の効率性を示した。
関連論文リスト
- $O(d/T)$ Convergence Theory for Diffusion Probabilistic Models under Minimal Assumptions [6.76974373198208]
我々は、最小限の仮定の下で、人気のあるSDEベースのサンプルラーに対して高速収束理論を確立する。
解析の結果, スコア関数の$ell_2$-accurate推定値が与えられた場合, 対象分布と生成分布の総変動距離は$O(d/T)$で上限値となることがわかった。
これは、逆プロセスの各ステップでエラーがどのように伝播するかの詳細な特徴を提供する、新しい分析ツールセットによって達成される。
論文 参考訳(メタデータ) (2024-09-27T17:59:10Z) - Distributed Statistical Min-Max Learning in the Presence of Byzantine
Agents [34.46660729815201]
本稿では,ビザンチンの敵対的エージェントと競合する新たな課題に焦点をあて,マルチエージェントのmin-max学習問題を考察する。
我々の主な貢献は、滑らかな凸凹関数と滑らかな凸凸凸関数に対する頑健な外勾配アルゴリズムのクリップ解析を提供することである。
我々の利率はほぼ最適であり、敵の汚職の影響と非汚職エージェント間の協力の利益の両方を明らかにしている。
論文 参考訳(メタデータ) (2022-04-07T03:36:28Z) - Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium
Learning from Offline Datasets [101.5329678997916]
両プレイヤーゼロサムマルコフゲーム(MG)をオフライン環境で研究する。
目標は、事前収集されたデータセットに基づいて、近似的なナッシュ均衡(NE)ポリシーペアを見つけることである。
論文 参考訳(メタデータ) (2022-02-15T15:39:30Z) - Distribution Regression with Sliced Wasserstein Kernels [45.916342378789174]
分布回帰のための最初のOTに基づく推定器を提案する。
このような表現に基づくカーネルリッジ回帰推定器の理論的性質について検討する。
論文 参考訳(メタデータ) (2022-02-08T15:21:56Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Tight Mutual Information Estimation With Contrastive Fenchel-Legendre
Optimization [69.07420650261649]
我々はFLOと呼ばれる新しい,シンプルで強力なコントラストMI推定器を提案する。
実証的に、我々のFLO推定器は前者の限界を克服し、より効率的に学習する。
FLOの有効性は、広範囲なベンチマークを用いて検証され、実際のMI推定におけるトレードオフも明らかにされる。
論文 参考訳(メタデータ) (2021-07-02T15:20:41Z) - On Centralized and Distributed Mirror Descent: Exponential Convergence
Analysis Using Quadratic Constraints [8.336315962271396]
ミラー降下(MD)は、勾配降下(GD)を含むいくつかのアルゴリズムを仮定する強力な一階最適化手法である。
本研究では,強い凸と滑らかな問題に対して,集中型および分散型のMDの正確な収束率について検討した。
論文 参考訳(メタデータ) (2021-05-29T23:05:56Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Finite Sample Analysis of Minimax Offline Reinforcement Learning:
Completeness, Fast Rates and First-Order Efficiency [83.02999769628593]
強化学習におけるオフ・ポリティィ・アセスメント(OPE)の理論的特徴について述べる。
ミニマックス法により、重みと品質関数の高速収束を実現することができることを示す。
非タブラル環境における1次効率を持つ最初の有限サンプル結果を示す。
論文 参考訳(メタデータ) (2021-02-05T03:20:39Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
本稿では,深層学習(深層AUC)により注目度が高まっている,円滑な非凹部min-max問題の解法に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-12T00:32:21Z) - Adopting Robustness and Optimality in Fitting and Learning [4.511425319032815]
我々は、ロバスト最適化(RO)指数 $lambda$ を $-infty 桁にプッシュすることで、改良された指数化推定器を一般化する。
このロバスト性はRONISTによって適応的に実現され制御される。
論文 参考訳(メタデータ) (2015-10-13T19:14:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。