論文の概要: Privacy in Open Search: A Review of Challenges and Solutions
- arxiv url: http://arxiv.org/abs/2110.10720v1
- Date: Wed, 20 Oct 2021 18:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-23 15:17:29.549272
- Title: Privacy in Open Search: A Review of Challenges and Solutions
- Title(参考訳): オープン検索におけるプライバシ - 課題と解決策のレビュー
- Authors: Samuel Sousa, Roman Kern and Christian Guetl
- Abstract要約: 情報検索(IR)は、攻撃や意図しない文書や検索履歴の開示など、プライバシー上の脅威に晒されている。
この研究は、ユーザの生成したテキストデータを含むタスクに焦点を当て、最近のIR文学におけるプライバシーに関するオープンな課題を強調し、議論することを目的としている。
- 参考スコア(独自算出の注目度): 0.6445605125467572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy is of worldwide concern regarding activities and processes that
include sensitive data. For this reason, many countries and territories have
been recently approving regulations controlling the extent to which
organizations may exploit data provided by people. Artificial intelligence
areas, such as machine learning and natural language processing, have already
successfully employed privacy-preserving mechanisms in order to safeguard data
privacy in a vast number of applications. Information retrieval (IR) is
likewise prone to privacy threats, such as attacks and unintended disclosures
of documents and search history, which may cripple the security of users and be
penalized by data protection laws. This work aims at highlighting and
discussing open challenges for privacy in the recent literature of IR, focusing
on tasks featuring user-generated text data. Our contribution is threefold:
firstly, we present an overview of privacy threats to IR tasks; secondly, we
discuss applicable privacy-preserving mechanisms which may be employed in
solutions to restrain privacy hazards; finally, we bring insights on the
tradeoffs between privacy preservation and utility performance for IR tasks.
- Abstract(参考訳): プライバシーは、機密データを含む活動やプロセスに関する世界中の関心事である。
このため、多くの国や地域は最近、人々が提供したデータを活用できる範囲を規制する規制を承認している。
機械学習や自然言語処理といった人工知能分野は、膨大な数のアプリケーションでデータプライバシを保護するために、すでにプライバシ保存機構をうまく採用している。
情報検索(ir)も同様に、攻撃や文書や検索履歴の意図しない開示といったプライバシーの脅威にさらされやすく、ユーザーのセキュリティを損なう恐れがあり、データ保護法によって罰せられる。
この研究は、ユーザの生成したテキストデータを含むタスクに焦点を当て、最近のIR文学におけるプライバシーに関するオープンな課題を強調し、議論することを目的としている。
第1に,irタスクに対するプライバシの脅威の概要を示す。第2に,プライバシハザードを抑制するソリューションで採用される可能性のある,適切なプライバシ保存メカニズムについて論じる。最後に,プライバシの保護とirタスクのユーティリティパフォーマンスとのトレードオフに関する洞察を提供する。
関連論文リスト
- Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
大規模言語モデル(LLM)は、人工知能の大幅な進歩を表し、様々な領域にまたがる応用を見つける。
トレーニングのための大規模なインターネットソースデータセットへの依存は、注目すべきプライバシー問題を引き起こす。
特定のアプリケーション固有のシナリオでは、これらのモデルをプライベートデータで微調整する必要があります。
論文 参考訳(メタデータ) (2024-08-10T05:41:19Z) - A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures [50.987594546912725]
AIのプライバシと説明可能性に関する研究が増えているにもかかわらず、プライバシを保存するモデル説明にはほとんど注意が払われていない。
本稿では,モデル説明に対するプライバシ攻撃とその対策に関する,最初の徹底的な調査を紹介する。
論文 参考訳(メタデータ) (2024-03-31T12:44:48Z) - AI-Driven Anonymization: Protecting Personal Data Privacy While
Leveraging Machine Learning [5.015409508372732]
本稿では、個人データのプライバシー保護と匿名化の促進を研究の中心的目的とする。
機械学習の差分プライバシー保護アルゴリズムを使用して、個人データのプライバシ保護と検出を実現する。
また、プライバシと個人データ保護に関連する機械学習の既存の課題に対処し、改善提案を提供し、データセットに影響を与える要因を分析して、タイムリーな個人データプライバシ検出と保護を可能にする。
論文 参考訳(メタデータ) (2024-02-27T04:12:25Z) - Privacy-Preserving Language Model Inference with Instance Obfuscation [33.86459812694288]
言語モデル・アズ・ア・サービス(LM)は、開発者や研究者が事前訓練された言語モデルを使用して推論を行うための便利なアクセスを提供する。
入力データとプライベート情報を含む推論結果は、サービスコール中にプレーンテキストとして公開され、プライバシー上の問題が発生する。
本稿では,自然言語理解タスクにおける決定プライバシ問題に対処することに焦点を当てた,インスタンス・オブフルスケート推論(IOI)手法を提案する。
論文 参考訳(メタデータ) (2024-02-13T05:36:54Z) - Human-Centered Privacy Research in the Age of Large Language Models [31.379232599019915]
このSIGは、使用可能なセキュリティとプライバシ、人間とAIのコラボレーション、NLP、その他の関連するドメインの背景を持つ研究者を集めて、この問題に対する見解と経験を共有することを目的としている。
論文 参考訳(メタデータ) (2024-02-03T02:32:45Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
差分プライバシ(DP)分野における現状と現状の方法論の詳細なレビューを行う。
論文のポイントとハイレベルな内容は,「認知プライバシ(DP:次のフロンティアへの挑戦)」の議論から生まれた。
この記事では、プライバシの領域におけるアルゴリズムおよび設計決定の基準点を提供することを目標とし、重要な課題と潜在的研究の方向性を強調します。
論文 参考訳(メタデータ) (2023-04-14T05:29:18Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
この問題に対処するために、説明可能性がどのように役立つかを検討しました。
私たちはプライバシーの説明を作成し、エンドユーザの理由と特定のデータが必要な理由を明らかにするのに役立ちました。
我々の発見は、プライバシーの説明がソフトウェアシステムの信頼性を高めるための重要なステップであることを示している。
論文 参考訳(メタデータ) (2022-10-18T09:30:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。