論文の概要: Quantum machine learning beyond kernel methods
- arxiv url: http://arxiv.org/abs/2110.13162v1
- Date: Mon, 25 Oct 2021 18:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 13:21:57.036808
- Title: Quantum machine learning beyond kernel methods
- Title(参考訳): カーネルメソッドを超えた量子機械学習
- Authors: Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M.
K\"ubler, Hans J. Briegel, Vedran Dunjko
- Abstract要約: パラメタライズド量子回路モデルは、カーネルの定式化よりも極めて優れた一般化性能を示すことを示す。
我々の結果は、カーネルの定式化の隣の量子機械学習モデルのより包括的な理論に向けた別のステップを構成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With noisy intermediate-scale quantum computers showing great promise for
near-term applications, a number of machine learning algorithms based on
parametrized quantum circuits have been suggested as possible means to achieve
learning advantages. Yet, our understanding of how these quantum machine
learning models compare, both to existing classical models and to each other,
remains limited. A big step in this direction has been made by relating them to
so-called kernel methods from classical machine learning. By building on this
connection, previous works have shown that a systematic reformulation of many
quantum machine learning models as kernel models was guaranteed to improve
their training performance. In this work, we first extend the applicability of
this result to a more general family of parametrized quantum circuit models
called data re-uploading circuits. Secondly, we show, through simple
constructions and numerical simulations, that models defined and trained
variationally can exhibit a critically better generalization performance than
their kernel formulations, which is the true figure of merit of machine
learning tasks. Our results constitute another step towards a more
comprehensive theory of quantum machine learning models next to kernel
formulations.
- Abstract(参考訳): ノイズの多い中間スケール量子コンピュータは、短期的応用に非常に有望であり、パラメトリズド量子回路に基づく多くの機械学習アルゴリズムが学習の利点を達成する手段として提案されている。
しかし、これらの量子機械学習モデルが既存の古典モデルと互いにどのように比較されるかを理解することは、まだ限られている。
この方向の大きな一歩は、古典的機械学習のいわゆるカーネルメソッドにそれらを関連付けることである。
この接続に基づいて、以前の研究では、カーネルモデルがトレーニング性能を改善するために保証されたため、多くの量子機械学習モデルの体系的な再構成が示されている。
本研究では、この結果の適用性を、データ再ロード回路と呼ばれるより一般的なパラメタライズド量子回路モデルに拡張する。
第2に,単純な構成と数値シミュレーションによって,モデルの定義とトレーニングが,機械学習タスクのメリットの真の姿であるカーネル定式化よりも極めて優れた一般化性能を示すことを示す。
この結果は、カーネルの定式化に隣接する量子機械学習モデルのより包括的理論への新たな一歩となる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Symmetry-invariant quantum machine learning force fields [0.0]
我々は、データに着想を得た、広範囲な物理関連対称性の集合を明示的に組み込んだ量子ニューラルネットワークを設計する。
この結果から,分子力場生成は量子機械学習の枠組みを生かして著しく利益を得る可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-19T16:15:53Z) - Shadows of quantum machine learning [2.236957801565796]
トレーニング中にのみ量子リソースを必要とする量子モデルの新たなクラスを導入し、トレーニングされたモデルの展開は古典的である。
このモデルのクラスは古典的に展開された量子機械学習において普遍的であることを証明している。
論文 参考訳(メタデータ) (2023-05-31T18:00:02Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Generative model for learning quantum ensemble via optimal transport
loss [0.9404723842159504]
量子アンサンブルを学習できる量子生成モデルを提案する。
提案したモデルは、量子デバイスのヘルスチェックのような幅広い応用の道を開く。
論文 参考訳(メタデータ) (2022-10-19T17:35:38Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum machine learning models are kernel methods [0.0]
この技術写本は、量子モデルをカーネルメソッドとして体系的に言い換えることでリンクを要約し、形式化し、拡張する。
これは、ほとんどの短期およびフォールトトレラント量子モデルは、一般的な支持ベクトルマシンに置き換えることができることを示している。
特にカーネルベースのトレーニングは、変分回路のトレーニングよりも優れた、あるいは同等に優れた量子モデルを見つけることが保証されている。
論文 参考訳(メタデータ) (2021-01-26T19:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。