論文の概要: Authentication Attacks on Projection-based Cancelable Biometric Schemes
- arxiv url: http://arxiv.org/abs/2110.15163v1
- Date: Thu, 28 Oct 2021 14:39:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 22:16:55.125535
- Title: Authentication Attacks on Projection-based Cancelable Biometric Schemes
- Title(参考訳): 投影型Cancelable Biometric Schemesにおける認証攻撃
- Authors: Axel Durbet, Pascal Lafourcade, Denis Migdal, Kevin Thiry-Atighehchi
and Paul-Marie Grollemund
- Abstract要約: Cancelable Biometric schemesは、パスワード、ストアドシークレット、ソルトといったユーザ固有のトークンとバイオメトリックデータを組み合わせることで、安全なバイオメトリックテンプレートを生成することを目的としている。
キャンセル可能なバイオメトリックスキームのセキュリティ要件は、比較の精度を損なうことなく、テンプレートの不可逆性、非リンク性、無効性に関するものである。
本稿では、整数線形計画法(ILP)と2次制約付き二次計画法(QCQP)の助けを借りて、従来のキャンセル可能なスキームに対してこれらの攻撃を形式化する。
- 参考スコア(独自算出の注目度): 0.6499759302108924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancelable biometric schemes aim at generating secure biometric templates by
combining user specific tokens, such as password, stored secret or salt, along
with biometric data. This type of transformation is constructed as a
composition of a biometric transformation with a feature extraction algorithm.
The security requirements of cancelable biometric schemes concern the
irreversibility, unlinkability and revocability of templates, without losing in
accuracy of comparison. While several schemes were recently attacked regarding
these requirements, full reversibility of such a composition in order to
produce colliding biometric characteristics, and specifically presentation
attacks, were never demonstrated to the best of our knowledge. In this paper,
we formalize these attacks for a traditional cancelable scheme with the help of
integer linear programming (ILP) and quadratically constrained quadratic
programming (QCQP). Solving these optimization problems allows an adversary to
slightly alter its fingerprint image in order to impersonate any individual.
Moreover, in an even more severe scenario, it is possible to simultaneously
impersonate several individuals.
- Abstract(参考訳): Cancelable Biometric schemesは、パスワード、ストアドシークレット、ソルトといったユーザ固有のトークンとバイオメトリックデータを組み合わせることで、安全なバイオメトリックテンプレートを生成することを目的としている。
このタイプの変換は、特徴抽出アルゴリズムを用いた生体変換の合成として構成される。
キャンセル可能なバイオメトリックスキームのセキュリティ要件は、比較の精度を失うことなく、テンプレートの不可逆性、非リンク性、無効性を懸念する。
これらの要件に関して、最近いくつかのスキームが攻撃されたが、このような構成の完全な可逆性は、衝突するバイオメトリック特性、特にプレゼンテーションアタックを生み出すために、我々の知識を最大限に発揮することはなかった。
本稿では,整数線形計画 (ilp) と二次制約付き二次計画 (qcqp) を用いて,従来のキャンセルスキームに対する攻撃を形式化する。
これらの最適化問題を解決することで、敵は個人を偽装するために指紋画像をわずかに変更することができる。
さらに、さらに厳しいシナリオでは、複数の個人を同時に同一視することができる。
関連論文リスト
- ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
深層学習に基づく顔操作の誤用は、公民権に対する潜在的な脅威となる。
この不正行為を防ぐため、プロアクティブな防御技術が提案され、操作プロセスを妨害した。
我々は,ID-Guardと呼ばれる,顔操作と戦うための新しい普遍的枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-20T09:30:08Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Enhancing Privacy in Face Analytics Using Fully Homomorphic Encryption [8.742970921484371]
本稿では,FHE(Fully Homomorphic Encryption)と,PolyProtectと呼ばれるテンプレート保護方式を組み合わせた新しい手法を提案する。
提案手法は,非可逆性と無リンク性を保証し,ソフトバイオメトリック埋め込みの漏洩を効果的に防止する。
論文 参考訳(メタデータ) (2024-04-24T23:56:03Z) - Privacy-preserving Multi-biometric Indexing based on Frequent Binary
Patterns [7.092869001331781]
本稿では,保護された深いキャンセル可能なテンプレートを検索する,効率的なプライバシー保護型マルチバイオメトリック識別システムを提案する。
異なるタイプの生体特性から抽出された頻繁な二分パターンに含まれる低クラス内部の変動特性を利用するために,マルチバイオメトリック・ビンニング方式が設計された。
論文 参考訳(メタデータ) (2023-10-04T18:18:24Z) - OTB-morph: One-Time Biometrics via Morphing [16.23764869038004]
本稿では,生体計測をキャンセル可能な変換関数として活用する新しいアイデアを提案する。
フェースバイオメトリックスに対して提案手法を実験的に実装する。
論文 参考訳(メタデータ) (2023-02-17T18:39:40Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - OTB-morph: One-Time Biometrics via Morphing applied to Face Templates [8.623680649444212]
本稿では,テンプレートを潜在的な攻撃から保護することを目的とした,キャンセル可能なバイオメトリックスのための新しい手法を提案する。
フェースバイオメトリックスに対して提案手法を実験的に実装する。
論文 参考訳(メタデータ) (2021-11-25T18:35:34Z) - Random Hash Code Generation for Cancelable Fingerprint Templates using
Vector Permutation and Shift-order Process [3.172761915061083]
本稿では,ベクトル置換とシフト順序過程に基づく非可逆距離保存方式を提案する。
次に、非可逆性と類似性に基づく攻撃と戦うために、生成された特徴にシフト順序プロセスを適用する。
生成されたハッシュコードは、主要な無効性と非リンク性要件を満たす一方で、異なるセキュリティおよびプライバシ攻撃に対して耐性がある。
論文 参考訳(メタデータ) (2021-05-21T09:37:54Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。