Coherence revival under the Unruh effect and its metrological advantage
- URL: http://arxiv.org/abs/2111.01358v2
- Date: Tue, 31 Dec 2024 02:20:28 GMT
- Title: Coherence revival under the Unruh effect and its metrological advantage
- Authors: Jiafan Wang, Jingjun Zhang, Jun Feng,
- Abstract summary: We find that quantum coherence as a nonclassical correlation can be generated through the Markovian evolution of the detector system.
We verify such coherence revival by inspecting its metrological advantage on the quantum Fisher information (QFI) enhancement.
- Score: 2.3772112135888945
- License:
- Abstract: In this paper, we investigate the quantum coherence extraction {between} two accelerating Unruh-DeWitt detectors, coupling to a scalar field in $(3+1)$-dimensional Minkowski spacetime. We find that quantum coherence as a nonclassical correlation can be generated through the Markovian evolution of the {detector} system, just like quantum entanglement. However, with growing Unruh temperature, in contrast to monotonously degrading entanglement, we find that quantum coherence exhibits a striking revival phenomenon. For certain detectors' initial state choices, {the} coherence measure will reduce to zero at first {and} then grow to an asymptotic value. We verify such coherence revival by inspecting its metrological advantage on the quantum Fisher information (QFI) enhancement. Since the maximal QFI {bounds} the accuracy of quantum parameter estimation, we conclude that the extracted coherence can be utilized as a physical resource in quantum metrology.
Related papers
- Interplay of Quantum Coherence and Nonequilibrium Quantum Transport: An Exact Density Matrix Formulation in the Heisenberg Framework [0.0]
We bridge the gap between quantum coherence, quantum correlations, and nonequilibrium quantum transport in a quantum double-dot (QDD) system interacting with fermionic reservoirs.
We establish a connection between quantum coherence and transport current in a QDD system serially coupled to fermionic reservoirs.
arXiv Detail & Related papers (2025-02-17T18:27:14Z) - Probing quantum many-body dynamics using subsystem Loschmidt echos [39.34101719951107]
We experimentally investigate the subsystem Loschmidt echo, a quasi-local observable that captures key features of the Loschmidt echo.
In the short-time regime, we observe a dynamical quantum phase transition arising from genuine higher-order correlations.
In the long-time regime, the subsystem Loschmidt echo allows us to quantitatively determine the effective dimension and structure of the accessible Hilbert space in the thermodynamic limit.
arXiv Detail & Related papers (2025-01-28T14:51:37Z) - Quantum-enhanced sensing on an optical transition via emergent
collective quantum correlations [0.0]
We show how to harness scalable entanglement in an optical transition using 1D chains of up to 51 ions with state-dependent interactions that decay as a power-law function of the ion separation.
We demonstrate this in a Ramsey-type interferometer, where we reduce the measurement uncertainty by $-3.2 pm 0.5$ dB below the standard quantum limit for N = 51 ions.
arXiv Detail & Related papers (2023-03-19T15:41:32Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Correlations and Coherence in a Moving Unruh-deWitt Detector [0.0]
We investigate the quantum correlations and coherence of two accelerating Unruh-deWitt detectors coupled to a scalar field in 3 + 1 Minkowski space-time.
We show that the entanglement is completely destroyed in the limit of infinite acceleration while the local quantum uncertainty and l1-norm of coherence remain nonzero.
arXiv Detail & Related papers (2022-11-28T12:33:30Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.