論文の概要: Learning Size and Shape of Calabi-Yau Spaces
- arxiv url: http://arxiv.org/abs/2111.01436v1
- Date: Tue, 2 Nov 2021 08:48:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 20:04:41.107855
- Title: Learning Size and Shape of Calabi-Yau Spaces
- Title(参考訳): カラビ・ヤウ空間の学習サイズと形状
- Authors: Magdalena Larfors, Andre Lukas, Fabian Ruehle, Robin Schneider
- Abstract要約: 文字列圧縮空間のメトリクスを計算するための新しい機械学習ライブラリを提案する。
モンテカルロのサンプル積分の性能を従来の数値近似と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new machine learning library for computing metrics of string
compactification spaces. We benchmark the performance on Monte-Carlo sampled
integrals against previous numerical approximations and find that our neural
networks are more sample- and computation-efficient. We are the first to
provide the possibility to compute these metrics for arbitrary, user-specified
shape and size parameters of the compact space and observe a linear relation
between optimization of the partial differential equation we are training
against and vanishing Ricci curvature.
- Abstract(参考訳): 文字列圧縮空間のメトリクスを計算するための新しい機械学習ライブラリを提案する。
モンテカルロのサンプル積分の性能を従来の数値近似値と比較し,ニューラルネットワークがよりサンプル効率と計算効率に優れていることを見いだした。
我々は、コンパクト空間の任意の形状と大きさのパラメータについてこれらの指標を計算し、訓練している偏微分方程式の最適化とリッチ曲率の消滅の間の線形関係を観察する可能性を初めて提供する。
関連論文リスト
- Approximating Metric Magnitude of Point Sets [4.522729058300309]
計量等級は、多くの望ましい幾何学的性質を持つ点雲の「大きさ」の尺度である。
様々な数学的文脈に適応しており、最近の研究は機械学習と最適化アルゴリズムを強化することを示唆している。
本稿では, 等級問題について検討し, 効率よく近似する方法を示し, 凸最適化問題として扱うことができるが, 部分モジュラ最適化としては適用できないことを示す。
本稿では,高速に収束し精度の高い反復近似アルゴリズムと,計算をより高速に行うサブセット選択法という,2つの新しいアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-09-06T17:15:28Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
大規模ニューラルネットワークにおけるモデルとトレーニングデータセットサイズ間の計算-最適トレードオフについて検討する。
以上の結果から, チンチラの実証分析で裏付けられる線形関係が示唆された。
論文 参考訳(メタデータ) (2022-12-02T18:46:41Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Amortised inference of fractional Brownian motion with linear
computational complexity [0.0]
ランダムウォークのパラメータを推定するために,シミュレーションベースで償却されたベイズ推定手法を提案する。
提案手法は歩行パラメータの後方分布を確率自由な方法で学習する。
この手法を適用して、環境中の有限デコリレーション時間をさらに個々の軌道から推定できることを示す。
論文 参考訳(メタデータ) (2022-03-15T14:43:16Z) - Sobolev-type embeddings for neural network approximation spaces [5.863264019032882]
近似可能な速度に応じて関数を分類するニューラルネットワーク近似空間を考察する。
p$の異なる値に対して、これらの空間間の埋め込み定理を証明する。
古典函数空間の場合と同様、可積分性を高めるために「滑らかさ」(すなわち近似率)を交換できる。
論文 参考訳(メタデータ) (2021-10-28T17:11:38Z) - Level-Set Curvature Neural Networks: A Hybrid Approach [0.0]
レベルセット法で平均曲率を計算するための深層学習に基づくハイブリッド戦略を提案する。
提案手法は,改良回帰モデルの辞書と標準数値スキームを組み合わせて,曲率をより正確に推定する。
機械学習は、レベルセット手法の数値的欠点に対する実行可能な解決策を考案する有望な場であることを確認した。
論文 参考訳(メタデータ) (2021-04-07T06:51:52Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
密な相関体積表現は冗長であり、その中の要素のほんの一部で正確なフロー推定が達成できることを示した。
実験により,高い精度を維持しつつ計算コストとメモリ使用量を大幅に削減できることを示した。
論文 参考訳(メタデータ) (2021-04-05T21:44:00Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Estimating informativeness of samples with Smooth Unique Information [108.25192785062367]
サンプルが最終的な重みを知らせる量と、重みによって計算される関数を知らせる量を測定します。
線形化ネットワークを用いてこれらの量の効率的な近似を行う。
本稿では,データセットの要約など,いくつかの問題に適用する。
論文 参考訳(メタデータ) (2021-01-17T10:29:29Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。