論文の概要: Inferring untrained complex dynamics of delay systems using an adapted
echo state network
- arxiv url: http://arxiv.org/abs/2111.03706v1
- Date: Fri, 5 Nov 2021 19:09:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 17:09:22.043493
- Title: Inferring untrained complex dynamics of delay systems using an adapted
echo state network
- Title(参考訳): 適応エコー状態ネットワークを用いた遅延系の非訓練複素ダイナミクスの推定
- Authors: Mirko Goldmann, Claudio R. Mirasso, Ingo Fischer, Miguel C. Soriano
- Abstract要約: 任意の遅延を伴う系の物理に適応可能なエコー状態ネットワークを提案する。
ネットワークのトポロジの簡単な適応により、より短く、より長い遅延で現れる訓練されていない特徴を推測することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Caused by finite signal propagation velocities, many complex systems feature
time delays that may induce high-dimensional chaotic behavior and make
forecasting intricate. Here, we propose an echo state network adaptable to the
physics of systems with arbitrary delays. After training the network to
forecast a system with a unique and sufficiently long delay, it already learned
to predict the system dynamics for all other delays. A simple adaptation of the
network's topology allows us to infer untrained features such as
high-dimensional chaotic attractors, bifurcations, and even multistabilities,
that emerge with shorter and longer delays. Thus, the fusion of physical
knowledge of the delay system and data-driven machine learning yields a model
with high generalization capabilities and unprecedented prediction accuracy.
- Abstract(参考訳): 有限信号伝播速度により、多くの複雑な系は、高次元のカオス的振る舞いを誘発し、予測を複雑にする時間遅延を特徴とする。
本稿では,任意の遅延を持つ系の物理に適応可能なエコー状態ネットワークを提案する。
ネットワークをトレーニングして、ユニークで十分に長い遅延でシステムを予測した後、システムダイナミクスを他のすべての遅延に対して予測することを学びました。
ネットワークトポロジーの単純な適応により、より短く長い遅延で現れる高次元カオスアトラクタ、分岐、さらには多重安定性など、訓練されていない特徴を推測することができる。
このように、遅延システムの物理的知識とデータ駆動機械学習の融合は、高い一般化能力と前例のない予測精度のモデルをもたらす。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
浅いニューラルネットワークのネットワーク軌跡をこのレンズを通して解析することにより,このプロセスの動的特性について検討する。
我々は,学習率の仕組みによって,規則的かつカオス的な行動のヒントを見いだす。
この研究は、力学系理論、ネットワーク理論、機械学習のアイデアの交叉受精にも貢献している。
論文 参考訳(メタデータ) (2024-04-08T17:33:11Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - Vanilla Feedforward Neural Networks as a Discretization of Dynamical Systems [9.382423715831687]
本稿では,従来のネットワーク構造に戻り,バニラフィードフォワードネットワークが動的システムの数値的な離散化であることを示す。
我々の結果は、フィードフォワードニューラルネットワークの近似特性を理解するための新しい視点を提供することができる。
論文 参考訳(メタデータ) (2022-09-22T10:32:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Time-Reversal Symmetric ODE Network [138.02741983098454]
時間反転対称性は古典力学や量子力学においてしばしば保持される基本的な性質である。
本稿では,通常の微分方程式(ODE)ネットワークがこの時間反転対称性にどの程度よく適合しているかを測定する新しい損失関数を提案する。
時間反転対称性を完全に持たないシステムであっても, TRS-ODEN はベースラインよりも優れた予測性能が得られることを示す。
論文 参考訳(メタデータ) (2020-07-22T12:19:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。