論文の概要: Understanding Layer-wise Contributions in Deep Neural Networks through
Spectral Analysis
- arxiv url: http://arxiv.org/abs/2111.03972v1
- Date: Sat, 6 Nov 2021 22:49:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 15:02:46.808742
- Title: Understanding Layer-wise Contributions in Deep Neural Networks through
Spectral Analysis
- Title(参考訳): スペクトル解析による深層ニューラルネットワークの層間寄与の理解
- Authors: Yatin Dandi, Arthur Jacot
- Abstract要約: 本稿では,ディープニューラルネットワークの層次スペクトルバイアスを解析し,対象関数に対する誤差の低減における異なる層の寄与と関係付ける。
我々は、ディープニューラルネットワークのための高次元データセットにおいて、我々の理論を検証する実験結果を提供する。
- 参考スコア(独自算出の注目度): 6.0158981171030685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral analysis is a powerful tool, decomposing any function into simpler
parts. In machine learning, Mercer's theorem generalizes this idea, providing
for any kernel and input distribution a natural basis of functions of
increasing frequency. More recently, several works have extended this analysis
to deep neural networks through the framework of Neural Tangent Kernel. In this
work, we analyze the layer-wise spectral bias of Deep Neural Networks and
relate it to the contributions of different layers in the reduction of
generalization error for a given target function. We utilize the properties of
Hermite polynomials and spherical harmonics to prove that initial layers
exhibit a larger bias towards high-frequency functions defined on the unit
sphere. We further provide empirical results validating our theory in high
dimensional datasets for Deep Neural Networks.
- Abstract(参考訳): スペクトル分析は強力なツールであり、任意の機能をより単純な部分に分解する。
機械学習において、マーサーの定理はこのアイデアを一般化し、任意のカーネルと入力分布に周波数を増加させる関数の自然な基底を与える。
最近では、Neural Tangent Kernelのフレームワークを通じて、この分析をディープニューラルネットワークに拡張している研究もいくつかある。
本研究では,ディープニューラルネットワークの層別スペクトルバイアスを解析し,与えられた対象関数の一般化誤差の低減に寄与する異なる層との関連性について述べる。
ハーマイト多項式と球面調和の性質を利用して、初期層が単位球面上で定義される高周波関数に対してより大きなバイアスを示すことを証明した。
さらに,深層ニューラルネットワークのための高次元データセットにおいて,理論を検証する実験結果を提供する。
関連論文リスト
- Wide Neural Networks as Gaussian Processes: Lessons from Deep
Equilibrium Models [16.07760622196666]
本研究では,層間における共有重み行列を持つ無限深度ニューラルネットワークであるDeep equilibrium Model (DEQ)について検討する。
解析により,DEC層の幅が無限大に近づくにつれ,ガウス過程に収束することが明らかとなった。
注目すべきは、この収束は深さと幅の限界が交換されても成り立つことである。
論文 参考訳(メタデータ) (2023-10-16T19:00:43Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
この拡張抽象化はハイパーグラフニューラルネットワーク(HyperGNN)の表現性、学習、および(構造的)一般化を分析するためのフレームワークを記述する。
具体的には、HyperGNNが有限データセットからどのように学習し、任意の入力サイズのグラフ推論問題に構造的に一般化するかに焦点を当てる。
論文 参考訳(メタデータ) (2023-03-09T18:42:18Z) - Understanding the Spectral Bias of Coordinate Based MLPs Via Training
Dynamics [2.9443230571766854]
本稿では,ReLUネットワークの計算結果と勾配勾配収束速度の関連性について検討する。
次に、この定式化を用いて、低次元設定におけるスペクトルバイアスの重症度と位置符号化がこれを克服する方法について研究する。
論文 参考訳(メタデータ) (2023-01-14T04:21:25Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Theory of Deep Convolutional Neural Networks II: Spherical Analysis [9.099589602551573]
単位球面$mathbbSd-1$ of $mathbbRd$ 上の近似関数に適用された深部畳み込みニューラルネットワークの族を考える。
我々の解析は、近似関数がソボレフ空間 $Wr_infty (mathbbSd-1)$ に$r>0$ あるいは加法リッジ形式を取るとき、一様近似の速度を示す。
論文 参考訳(メタデータ) (2020-07-28T14:54:30Z) - A Generalized Neural Tangent Kernel Analysis for Two-layer Neural
Networks [87.23360438947114]
重み劣化を伴う雑音勾配降下は依然として「カーネル様」の挙動を示すことを示す。
これは、トレーニング損失が一定の精度まで線形に収束することを意味する。
また,重み劣化を伴う雑音勾配勾配勾配で学習した2層ニューラルネットワークに対して,新しい一般化誤差を確立する。
論文 参考訳(メタデータ) (2020-02-10T18:56:15Z) - Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural
Networks [17.188280334580195]
トレーニングサンプル数の関数として,カーネル回帰の一般化性能に関する解析式を導出する。
我々の表現は、トレーニングとニューラルカーネル・タンジェント(NTK)によるカーネル回帰の等価性により、広いニューラルネットワークに適用される。
我々は、合成データとMNISTデータセットのシミュレーションを用いて、我々の理論を検証する。
論文 参考訳(メタデータ) (2020-02-07T00:03:40Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。