論文の概要: A Histopathology Study Comparing Contrastive Semi-Supervised and Fully
Supervised Learning
- arxiv url: http://arxiv.org/abs/2111.05882v1
- Date: Wed, 10 Nov 2021 19:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-13 06:05:13.365656
- Title: A Histopathology Study Comparing Contrastive Semi-Supervised and Fully
Supervised Learning
- Title(参考訳): コントラスト型半監督学習と完全監督学習の比較による病理組織学的研究
- Authors: Lantian Zhang (1 and 2), Mohamed Amgad (2), Lee A.D. Cooper (2) ((1)
North Shore Country Day, Winnetka, IL, USA, (2) Department of Pathology,
Northwestern University, Chicago, IL, USA)
- Abstract要約: 計算病理学におけるラベル付け負担を軽減するための自己教師型学習について検討する。
ImageNetの事前学習ネットワークは,Barlow Twinsを用いた自己教師型表現よりも優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data labeling is often the most challenging task when developing
computational pathology models. Pathologist participation is necessary to
generate accurate labels, and the limitations on pathologist time and demand
for large, labeled datasets has led to research in areas including weakly
supervised learning using patient-level labels, machine assisted annotation and
active learning. In this paper we explore self-supervised learning to reduce
labeling burdens in computational pathology. We explore this in the context of
classification of breast cancer tissue using the Barlow Twins approach, and we
compare self-supervision with alternatives like pre-trained networks in
low-data scenarios. For the task explored in this paper, we find that ImageNet
pre-trained networks largely outperform the self-supervised representations
obtained using Barlow Twins.
- Abstract(参考訳): データラベリングは、しばしば計算病理モデルを開発する際に最も難しいタスクである。
病理学者の参加は正確なラベルを生成するために必要であり、大きなラベル付きデータセットに対する病理学者の時間と需要の制限は、患者レベルラベルを用いた弱い教師付き学習、機械支援アノテーション、アクティブラーニングなどの分野の研究につながっている。
本稿では,計算病理学におけるラベル付け負担を軽減するための自己教師型学習について検討する。
barlow twinsアプローチによる乳癌組織分類の文脈でこれを検討し,低データシナリオにおける自己スーパービジョンと事前訓練されたネットワークなどの代替手段を比較した。
本稿では,画像ネットワークの事前学習が,Barlow Twins を用いた自己教師型表現よりも優れていることを示す。
関連論文リスト
- Automated Labeling of German Chest X-Ray Radiology Reports using Deep
Learning [50.591267188664666]
本稿では,ルールベースのドイツ語CheXpertモデルによってラベル付けされたレポートに基づいて,ディープラーニングに基づくCheXpertラベル予測モデルを提案する。
その結果,3つのタスクすべてにおいて,ルールベースモデルを大幅に上回ったアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-06-09T16:08:35Z) - Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning [0.6269243524465492]
頭蓋内出血(ICH、Intracranial hemorrhage)は、タイムリーな診断と正確な治療を必要とする救命救急疾患である。
深層学習技術は、医用画像解析と処理の先駆的なアプローチとして現れてきた。
ICH分類タスクで訓練されたSwin変換器と分類ラベルを併用した,新しいICHセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T00:17:34Z) - Active Learning Based Domain Adaptation for Tissue Segmentation of
Histopathological Images [1.4724454726700604]
対象ドメインからラベル付きデータの小さなセットを使用して,次にラベル付けする最も情報性の高いサンプルを選択する,事前学習されたディープニューラルネットワークを提案する。
従来のF1スコアを用いた教師あり学習手法と比較して,本手法はラベル付きサンプルよりもはるかに少ない性能を示す。
論文 参考訳(メタデータ) (2023-03-09T13:03:01Z) - Human-machine Interactive Tissue Prototype Learning for Label-efficient
Histopathology Image Segmentation [18.755759024796216]
ディープ・ニューラル・ネットワークは、画像セグメンテーションを大幅に進歩させたが、通常は豊富なデータを必要とする。
本稿では,ラベル効率のよい組織原型辞書構築パイプラインを提案し,得られた原型を用いて病理組織像のセグメンテーションを導くことを提案する。
人間の機械的対話型組織プロトタイプ学習法は,完全教師付きベースラインと同等のセグメンテーション性能が得られることを示す。
論文 参考訳(メタデータ) (2022-11-26T06:17:21Z) - Evaluating the Robustness of Self-Supervised Learning in Medical Imaging [57.20012795524752]
自己監督は、小さな注釈付きデータセット上でターゲットタスクを訓練する際の効果的な学習戦略であることを示した。
本研究では,自己監視学習によって訓練されたネットワークが,医療画像の文脈における完全監視学習と比較して,堅牢性と汎用性に優れていることを示した。
論文 参考訳(メタデータ) (2021-05-14T17:49:52Z) - Self-supervised driven consistency training for annotation efficient
histopathology image analysis [13.005873872821066]
大きなラベル付きデータセットでニューラルネットワークをトレーニングすることは、計算病理学において依然として支配的なパラダイムである。
本研究では,非教師付き表現学習のための強力な監視信号を学ぶために,ヒストロジ全体スライディング画像の背景となる多段階的文脈的手がかりを利用する自己教師付きプレテキストタスクを提案する。
また,タスク固有の未ラベルデータとの予測整合性に基づいて,事前学習した表現を下流タスクに効果的に転送することを学ぶ教師による半教師付き一貫性パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-07T19:46:21Z) - DSAL: Deeply Supervised Active Learning from Strong and Weak Labelers
for Biomedical Image Segmentation [13.707848142719424]
アクティブ学習とセミスーパーバイザー学習戦略を組み合わせた深層アクティブセミスーパーバイザー学習フレームワークDSALを提案します。
DSALでは, 深層監視機構に基づく新たな基準が提案され, 高い不確実性を有する情報サンプルを選定する。
提案した基準を用いて,強ラベルと弱ラベルのサンプルを選択し,各アクティブな学習イテレーションにおいて,オラクルラベルと擬似ラベルを同時に生成する。
論文 参考訳(メタデータ) (2021-01-22T11:31:33Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
そこで我々は,臓器と病変のセグメンテーションのための教師と学生のスタイルに基づくセミ教師付き学習フレームワークを開発した。
我々は,本モデルがバウンディングボックスの品質に対して堅牢であることを示し,フル教師付き学習手法と比較した性能を実現する。
論文 参考訳(メタデータ) (2020-10-23T07:58:20Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。