論文の概要: A Spiking Neuron Synaptic Plasticity Model Optimized for Unsupervised
Learning
- arxiv url: http://arxiv.org/abs/2111.06768v1
- Date: Fri, 12 Nov 2021 15:26:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 07:55:58.001790
- Title: A Spiking Neuron Synaptic Plasticity Model Optimized for Unsupervised
Learning
- Title(参考訳): 教師なし学習に最適化されたスパイキングニューロンシナプス塑性モデル
- Authors: Mikhail Kiselev
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、教師なし、教師なし、強化学習など、あらゆる種類の学習タスクを実行するための視点ベースとして考えられている。
SNNでの学習は、シナプス前およびシナプス後ニューロンの活動に依存するシナプス重みのダイナミクスを決定する規則であるシナプス可塑性によって実施される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spiking neural networks (SNN) are considered as a perspective basis for
performing all kinds of learning tasks - unsupervised, supervised and
reinforcement learning. Learning in SNN is implemented through synaptic
plasticity - the rules which determine dynamics of synaptic weights depending
usually on activity of the pre- and post-synaptic neurons. Diversity of various
learning regimes assumes that different forms of synaptic plasticity may be
most efficient for, for example, unsupervised and supervised learning, as it is
observed in living neurons demonstrating many kinds of deviations from the
basic spike timing dependent plasticity (STDP) model. In the present paper, we
formulate specific requirements to plasticity rules imposed by unsupervised
learning problems and construct a novel plasticity model generalizing STDP and
satisfying these requirements. This plasticity model serves as main logical
component of the novel supervised learning algorithm called SCoBUL (Spike
Correlation Based Unsupervised Learning) proposed in this work. We also present
the results of computer simulation experiments confirming efficiency of these
synaptic plasticity rules and the algorithm SCoBUL.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、教師なし、教師なし、強化学習など、あらゆる種類の学習タスクを実行するための視点ベースと考えられている。
SNNでの学習は、シナプス前およびシナプス後ニューロンの活動に依存するシナプス重みのダイナミクスを決定する規則であるシナプス可塑性によって実施される。
様々な学習体制の多様性は、基本的なスパイクタイミング依存的可塑性(STDP)モデルから様々な種類の偏差を示す生きたニューロンで観察されるように、例えば教師なし学習や教師なし学習において、様々な形のシナプス的可塑性が最も効率的であると仮定している。
本稿では,教師なし学習問題によって課される可塑性規則に対する具体的な要件を定式化し,stdpを一般化し,それらの要件を満たす新しい可塑性モデルを構築する。
この塑性モデルは、本研究で提案されたSCoBUL(Spike correlation Based Unsupervised Learning)と呼ばれる新しい教師付き学習アルゴリズムの主要な論理的要素である。
また,これらのシナプス塑性規則とアルゴリズムSCoBULの効率性を確認するコンピュータシミュレーション実験の結果を示す。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
ニューラル抽象化は、最近、複雑な非線形力学モデルの形式近似として導入されている。
我々は形式的帰納的合成法を用いて、これらのセマンティクスを用いた動的モデルをもたらすニューラル抽象化を生成する。
論文 参考訳(メタデータ) (2023-07-28T13:22:32Z) - Unsupervised Spiking Neural Network Model of Prefrontal Cortex to study
Task Switching with Synaptic deficiency [0.0]
スパイキングニューラルネットワーク(SNN)を用いた前頭前皮質(PFC)の計算モデルを構築した。
本研究では,SNNが生物学的に妥当な値に近いパラメータを持ち,教師なしのスパイクタイミング依存塑性(STDP)学習規則を用いてモデルを訓練する。
論文 参考訳(メタデータ) (2023-05-23T05:59:54Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
シナプス可塑性のモデル化における歴史的,ボトムアップ的,トップダウン的なアプローチを概観する。
スパイクベース学習ルールの低レイテンシおよび低消費電力ハードウェア実装をサポートする計算プリミティブを同定する。
論文 参考訳(メタデータ) (2022-09-30T15:35:04Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - SpikePropamine: Differentiable Plasticity in Spiking Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)におけるシナプス可塑性と神経調節シナプス可塑性のダイナミクスを学習するための枠組みを導入する。
異なる可塑性で強化されたSNNは、時間的学習課題の集合を解決するのに十分であることを示す。
これらのネットワークは、高次元のロボット学習タスクで移動を生成できることも示されている。
論文 参考訳(メタデータ) (2021-06-04T19:29:07Z) - Unveiling the role of plasticity rules in reservoir computing [0.0]
Reservoir Computing (RC) は機械学習において魅力的なアプローチである。
我々は,RCの性能向上につながる変化に対して,塑性規則が果たす役割を分析する。
論文 参考訳(メタデータ) (2021-01-14T19:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。