論文の概要: DeepCurrents: Learning Implicit Representations of Shapes with
Boundaries
- arxiv url: http://arxiv.org/abs/2111.09383v1
- Date: Wed, 17 Nov 2021 20:34:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-19 14:43:33.338518
- Title: DeepCurrents: Learning Implicit Representations of Shapes with
Boundaries
- Title(参考訳): deepcurrents: 境界を持つ形状の暗黙的な表現を学ぶ
- Authors: David Palmer and Dmitriy Smirnov and Stephanie Wang and Albert Chern
and Justin Solomon
- Abstract要約: 本稿では,明示的な境界曲線と暗黙的な学習内部を結合したハイブリッド形状表現を提案する。
さらに、境界曲線と潜時符号でパラメータ化された形状の学習ファミリを実証する。
- 参考スコア(独自算出の注目度): 25.317812435426216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent techniques have been successful in reconstructing surfaces as level
sets of learned functions (such as signed distance fields) parameterized by
deep neural networks. Many of these methods, however, learn only closed
surfaces and are unable to reconstruct shapes with boundary curves. We propose
a hybrid shape representation that combines explicit boundary curves with
implicit learned interiors. Using machinery from geometric measure theory, we
parameterize currents using deep networks and use stochastic gradient descent
to solve a minimal surface problem. By modifying the metric according to target
geometry coming, e.g., from a mesh or point cloud, we can use this approach to
represent arbitrary surfaces, learning implicitly defined shapes with
explicitly defined boundary curves. We further demonstrate learning families of
shapes jointly parameterized by boundary curves and latent codes.
- Abstract(参考訳): 近年、深層ニューラルネットワークによってパラメータ化された学習関数(符号付き距離場など)のレベルセットとして、表面の再構成に成功した。
しかし、これらの手法の多くは閉曲面のみを学習し、境界曲線で形状を再構成することはできない。
明示的な境界曲線と暗黙的に学習された内部を結合したハイブリッド形状表現を提案する。
幾何測度理論の機械を用いて、ディープネットワークを用いて電流をパラメータ化し、極小表面問題を解くために確率勾配降下を用いる。
例えばメッシュやポイントクラウドから来るターゲットジオメトリに従ってメトリックを変更することで、このアプローチを使って任意の表面を表現することができ、明示的に定義された境界曲線で暗黙的に定義された形状を学習できる。
さらに、境界曲線と潜時符号でパラメータ化された形状の学習ファミリを実証する。
関連論文リスト
- 3D Neural Edge Reconstruction [61.10201396044153]
本研究では,線と曲線に焦点をあてて3次元エッジ表現を学習する新しい手法であるEMAPを紹介する。
多視点エッジマップから無符号距離関数(UDF)の3次元エッジ距離と方向を暗黙的に符号化する。
この神経表現の上に、推定されたエッジ点とその方向から3次元エッジを頑健に抽象化するエッジ抽出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:23:51Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
ニューラルな暗黙表現から表面メッシュを抽出する新しい微分可能なメッシュアルゴリズムを提案する。
本手法は,通常のテッセルレーションパターンと,既存の手法に比べて三角形面の少ないメッシュを生成する。
論文 参考訳(メタデータ) (2022-10-05T16:52:25Z) - Minimal Neural Atlas: Parameterizing Complex Surfaces with Minimal
Charts and Distortion [71.52576837870166]
我々は、新しいアトラスに基づく明示的なニューラルサーフェス表現であるミニマルニューラルアトラスを提案する。
その中核は完全学習可能なパラメトリック領域であり、パラメトリック空間の開平方上で定義された暗黙の確率的占有場によって与えられる。
我々の再構成は、トポロジーと幾何学に関する懸念の分離のため、全体的な幾何学の観点からより正確である。
論文 参考訳(メタデータ) (2022-07-29T16:55:06Z) - A Level Set Theory for Neural Implicit Evolution under Explicit Flows [102.18622466770114]
暗黙の曲面をパラメータ化するコーディネートベースのニューラルネットワークは、幾何学の効率的な表現として登場した。
このような暗黙の面に三角形メッシュに対して定義された変形操作を適用することができるフレームワークを提案する。
提案手法は, 表面平滑化, 平均曲率流, 逆レンダリング, 暗黙的幾何によるユーザ定義編集など, 応用性の向上を示す。
論文 参考訳(メタデータ) (2022-04-14T17:59:39Z) - Differential Geometry in Neural Implicits [0.6198237241838558]
トライアングルメッシュの離散微分幾何とニューラル暗黙曲面の連続微分幾何を橋渡しするニューラル暗黙の枠組みを導入する。
ニューラルネットワークの微分可能特性と三角形メッシュの離散幾何学を利用して、ニューラルネットワークをニューラルネットワークの暗黙関数のゼロレベル集合として近似する。
論文 参考訳(メタデータ) (2022-01-23T13:40:45Z) - DeepMesh: Differentiable Iso-Surface Extraction [53.77622255726208]
本稿では,Deep Implicit Fieldsから表面メッシュを明示的に表現する方法を提案する。
我々の重要な洞察は、暗黙の場摂動が局所的な表面形状にどのように影響するかを推論することによって、最終的に表面サンプルの3次元位置を区別できるということである。
私たちはこれを利用して、そのトポロジを変えることができるDeepMesh – エンドツーエンドの差別化可能なメッシュ表現を定義する。
論文 参考訳(メタデータ) (2021-06-20T20:12:41Z) - Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks [0.5804039129951741]
本稿では,偏微分方程式の深層学習におけるトレーニングを改善するために,人工ニューラルネットワークにおける幾何対応トライアル関数を提案する。
均質なディリクレ境界条件を正確に課すために、トライアル関数は、PINN近似により$phi$と乗算される。
アフィン境界と曲線境界を持つ領域上の線形および非線形境界値問題に対する数値解を提案する。
論文 参考訳(メタデータ) (2021-04-17T03:02:52Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - MeshSDF: Differentiable Iso-Surface Extraction [45.769838982991736]
本稿では,Deep Signed Distance関数から表面メッシュを明示的に表現する方法を提案する。
我々の重要な洞察は、暗黙の場摂動が局所的な表面形状にどのように影響するかを推論することによって、最終的に表面サンプルの3次元位置を区別できるということである。
我々はこれを利用して、そのトポロジを変えることができるエンドツーエンドの差別化可能なメッシュ表現であるMeshSDFを定義します。
論文 参考訳(メタデータ) (2020-06-06T23:44:05Z) - A deep learning approach for the computation of curvature in the
level-set method [0.0]
そこで本研究では,2次元暗黙曲線の平均曲率をレベルセット法で推定する手法を提案する。
我々のアプローチは、様々な解像度の均一な格子に没入した円柱から構築された合成データセットにフィードフォワードニューラルネットワークを適合させることに基づいている。
論文 参考訳(メタデータ) (2020-02-04T00:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。