論文の概要: MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks
- arxiv url: http://arxiv.org/abs/2111.14549v1
- Date: Mon, 29 Nov 2021 14:24:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 17:39:26.871394
- Title: MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks
- Title(参考訳): MeshUDF: 符号なし距離フィールドネットワークの高速かつ微分可能なメッシュ化
- Authors: Benoit Guillard and Federico Stella and Pascal Fua
- Abstract要約: 3次元オープンサーフェスモデリングによる深部ニューラルネットワークの非符号距離場(UDF)近似に関する研究
本研究では, 平面交差を局所的に検出することにより, 深部UDFを開放面としてマーチング立方体の拡張により直接メッシュ化することを提案する。
本手法は高密度の点雲のメッシュよりも桁違いに高速であり,開面の膨張よりも高精度である。
- 参考スコア(独自算出の注目度): 68.82901764109685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work modelling 3D open surfaces train deep neural networks to
approximate Unsigned Distance Fields (UDFs) and implicitly represent shapes. To
convert this representation to an explicit mesh, they either use
computationally expensive methods to mesh a dense point cloud sampling of the
surface, or distort the surface by inflating it into a Signed Distance Field
(SDF).
By contrast, we propose to directly mesh deep UDFs as open surfaces with an
extension of marching cubes, by locally detecting surface crossings. Our method
is order of magnitude faster than meshing a dense point cloud, and more
accurate than inflating open surfaces. Moreover, we make our surface extraction
differentiable, and show it can help fit sparse supervision signals.
- Abstract(参考訳): 最近の3Dオープンサーフェスモデリングでは、ディープニューラルネットワークをトレーニングして、Unsigned Distance Fields(UDF)を近似し、形を暗黙的に表現している。
この表現を明示的なメッシュに変換するには、計算コストのかかる方法を使用して表面の高密度点雲サンプリングをメッシュするか、あるいはそれを符号距離場(Signed Distance Field, SDF)に膨らませることで表面を歪ませる。
対照的に, 深層udfを, 局所的に表面交差を検出することにより, マーチングキューブを拡張したオープンサーフェスとして直接接続することを提案する。
本手法は高密度の点雲のメッシュよりも桁違いに高速であり,開面の膨張よりも高精度である。
さらに, 表面抽出を微分可能とし, 疎い監視信号に適合することを示す。
関連論文リスト
- Statistical Edge Detection And UDF Learning For Shape Representation [1.9799527196428242]
得られたニューラルUDFの元の3次元表面への忠実度を向上させるUDFの学習法を提案する。
表面縁周辺でのトレーニング点のサンプリングにより,トレーニング済みのニューラルUDFの局所的精度が向上することを示す。
本手法は局所的な幾何学的記述子よりも表面のエッジを高精度に検出する。
論文 参考訳(メタデータ) (2024-05-06T11:40:57Z) - Surface Reconstruction from Point Clouds via Grid-based Intersection Prediction [12.329450385760051]
本稿では,点対の線分と暗黙曲面との交点を直接予測する手法を提案する。
提案手法は,ShapeNet,MGN,ScanNetの3つのデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-03-21T02:31:17Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
スパース点雲から離散曲面を再構成する問題に対処する学習ベース手法であるGeoUDFを提案する。
具体的には、UDFのための幾何誘導学習法とその勾配推定を提案する。
予測されたUDFから三角形メッシュを抽出するために,カスタマイズされたエッジベースマーチングキューブモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-30T06:02:01Z) - CAP-UDF: Learning Unsigned Distance Functions Progressively from Raw Point Clouds with Consistency-Aware Field Optimization [54.69408516025872]
CAP-UDFは、生の点雲から一貫性を考慮したUDFを学ぶための新しい方法である。
我々は、クエリと近似曲面の関係を徐々に推測するようにニューラルネットワークを訓練する。
学習されたUDFの勾配を用いて表面を抽出する多角化アルゴリズムも導入する。
論文 参考訳(メタデータ) (2022-10-06T08:51:08Z) - Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors [52.25114448281418]
現在の方法では、接地距離や点正規化なしに単一点雲から符号付き距離関数 (Signed Distance Function, SDF) を学習することで、表面を再構築することができる。
そこで本稿では, 表面上の粗い点雲から高精度な表面を復元することを提案する。
本手法は, 接地距離や点正規化を伴わずに, 単一のスパース点雲からSDFを学習することができる。
論文 参考訳(メタデータ) (2022-04-22T09:45:20Z) - Deep Implicit Surface Point Prediction Networks [49.286550880464866]
暗黙の関数としての3次元形状の深い神経表現は、高忠実度モデルを生成することが示されている。
本稿では,CSP(Nest Surface-point)表現と呼ばれる新しい種類の暗黙の表現を用いて,そのような曲面をモデル化する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-10T14:31:54Z) - DUDE: Deep Unsigned Distance Embeddings for Hi-Fidelity Representation
of Complex 3D Surfaces [8.104199886760275]
DUDE は、非符号距離場 (uDF) を用いて表面との近接を表現し、正規ベクトル場 (nVF) は表面の向きを表現している。
この2つの組み合わせ (uDF+nVF) を用いて任意の開/閉形状の高忠実度表現を学習できることを示す。
論文 参考訳(メタデータ) (2020-11-04T22:49:05Z) - Neural Unsigned Distance Fields for Implicit Function Learning [53.241423815726925]
任意の3次元形状の符号なし距離場を予測するニューラルネットワークベースモデルであるニューラル距離場(NDF)を提案する。
NDFは、高解像度の表面を事前の暗黙のモデルとして表現するが、クローズドな表面データを必要としない。
NDFは、グラフィックスのレンダリングにのみ使用される技術を用いて、マルチターゲットレグレッション(1入力に複数の出力)に使用できる。
論文 参考訳(メタデータ) (2020-10-26T22:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。