論文の概要: Provable Guarantees for Understanding Out-of-distribution Detection
- arxiv url: http://arxiv.org/abs/2112.00787v1
- Date: Wed, 1 Dec 2021 19:18:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 16:59:18.122289
- Title: Provable Guarantees for Understanding Out-of-distribution Detection
- Title(参考訳): 分布外検出を理解するための証明可能な保証
- Authors: Peyman Morteza and Yixuan Li
- Abstract要約: 我々は,OOD検出の理論的理解を特徴付ける分析フレームワークを開発した。
我々のフレームワークは,ニューラルネットワークの新たなOOD検出手法であるGEMを動機付け,理論的および経験的優位性を実証する。
- 参考スコア(独自算出の注目度): 13.36367318623728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection is important for deploying machine
learning models in the real world, where test data from shifted distributions
can naturally arise. While a plethora of algorithmic approaches have recently
emerged for OOD detection, a critical gap remains in theoretical understanding.
In this work, we develop an analytical framework that characterizes and unifies
the theoretical understanding for OOD detection. Our analytical framework
motivates a novel OOD detection method for neural networks, GEM, which
demonstrates both theoretical and empirical superiority. In particular, on
CIFAR-100 as in-distribution data, our method outperforms a competitive
baseline by 16.57% (FPR95). Lastly, we formally provide provable guarantees and
comprehensive analysis of our method, underpinning how various properties of
data distribution affect the performance of OOD detection.
- Abstract(参考訳): out-of-distribution(ood)検出は、シフトした分散からのテストデータが自然に発生する現実世界における機械学習モデルのデプロイにおいて重要である。
ood検出のためのアルゴリズム的アプローチが最近多数登場しているが、理論的理解には重要なギャップが残っている。
本研究では,OOD検出の理論的理解を特徴付ける分析フレームワークを開発する。
我々の分析フレームワークは、ニューラルネットワークの新たなOOD検出手法であるGEMを動機付け、理論的および経験的優位性を実証する。
特に,CIFAR-100を非分配データとして,本手法は16.57%(FPR95。
最後に,データ分布の様々な特性がOOD検出の性能に与える影響を基盤として,証明可能な保証と包括的解析を行う。
関連論文リスト
- OAL: Enhancing OOD Detection Using Latent Diffusion [5.357756138014614]
Outlier Aware Learning (OAL)フレームワークは、潜伏空間で直接OODトレーニングデータを合成する。
In-Distribution (ID) と収集したOOD特徴の区別を増幅する相互情報に基づくコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T11:01:43Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Continual Evidential Deep Learning for Out-of-Distribution Detection [20.846788009755183]
不確実性に基づくディープラーニングモデルは、正確で信頼性の高い予測を提供する能力に対して、大きな関心を集めている。
Evidential Deep Learningは、単一決定論的ニューラルネットワークによるアウト・オブ・ディストリビューション(OOD)データの検出において、優れたパフォーマンスを実現している。
本稿では,オブジェクト分類とOOD検出を同時に行うために,明らかなディープラーニング手法を連続的な学習フレームワークに統合することを提案する。
論文 参考訳(メタデータ) (2023-09-06T13:36:59Z) - Unsupervised Evaluation of Out-of-distribution Detection: A Data-centric
Perspective [55.45202687256175]
アウト・オブ・ディストリビューション(OOD)検出法は、個々のテストサンプルがイン・ディストリビューション(IND)なのかOODなのかという、試験対象の真実を持っていると仮定する。
本稿では,OOD検出における教師なし評価問題を初めて紹介する。
我々は,OOD検出性能の教師なし指標としてGscoreを計算する3つの方法を提案する。
論文 参考訳(メタデータ) (2023-02-16T13:34:35Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - ReAct: Out-of-distribution Detection With Rectified Activations [20.792140933660075]
オフ・オブ・ディストリビューション (OOD) 検出は, 実用的重要性から近年注目されている。
主な課題の1つは、モデルがしばしばOODデータに対して高い信頼性の予測を生成することである。
我々は,OODデータに対するモデル過信を低減するためのシンプルで効果的な手法であるReActを提案する。
論文 参考訳(メタデータ) (2021-11-24T21:02:07Z) - On the Impact of Spurious Correlation for Out-of-distribution Detection [14.186776881154127]
我々は、不変性と環境特性の両方を考慮して、データシフトをモデル化し、新しい形式化を提案する。
その結果, トレーニングセットにおいて, 突発的特徴とラベルの相関が大きくなると, 検出性能が著しく悪化することが示唆された。
論文 参考訳(メタデータ) (2021-09-12T23:58:17Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining [51.19164318924997]
インフォメーション・アウトリエ・マイニングによるアドリアトレーニングは、OOD検出の堅牢性を向上させる。
ATOMは,古典的,敵対的なOOD評価タスクの幅広いファミリーの下で,最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-26T20:58:05Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。