論文の概要: Traversing Time with Multi-Resolution Gaussian Process State-Space
Models
- arxiv url: http://arxiv.org/abs/2112.03230v1
- Date: Mon, 6 Dec 2021 18:39:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 15:02:14.892270
- Title: Traversing Time with Multi-Resolution Gaussian Process State-Space
Models
- Title(参考訳): 多解ガウス過程状態空間モデルによるトラバース時間
- Authors: Krista Longi, Jakob Lindinger, Olaf Duennbier, Melih Kandemir, Arto
Klami, Barbara Rakitsch
- Abstract要約: 本稿では,複数のコンポーネントで構成されたガウス的プロセス状態空間アーキテクチャを提案する。
半合成データとエンジンモデリングタスクに新しい手法をベンチマークする。
どちらの実験でも、我々のアプローチは1つの時間スケールでしか動作しない最先端の代替手段と良好に比較できる。
- 参考スコア(独自算出の注目度): 17.42262122708566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Process state-space models capture complex temporal dependencies in
a principled manner by placing a Gaussian Process prior on the transition
function. These models have a natural interpretation as discretized stochastic
differential equations, but inference for long sequences with fast and slow
transitions is difficult. Fast transitions need tight discretizations whereas
slow transitions require backpropagating the gradients over long
subtrajectories. We propose a novel Gaussian process state-space architecture
composed of multiple components, each trained on a different resolution, to
model effects on different timescales. The combined model allows traversing
time on adaptive scales, providing efficient inference for arbitrarily long
sequences with complex dynamics. We benchmark our novel method on
semi-synthetic data and on an engine modeling task. In both experiments, our
approach compares favorably against its state-of-the-art alternatives that
operate on a single time-scale only.
- Abstract(参考訳): ガウス過程状態空間モデルは、遷移関数の前にガウス過程を配置することで、原理的に複雑な時間依存を捉える。
これらのモデルは離散化確率微分方程式として自然な解釈を持つが、高速かつ遅い遷移を持つ長い列に対する推論は困難である。
高速遷移は厳密な離散化を必要とするが、遅い遷移は長い軌道上の勾配をバックプロパゲーションする必要がある。
本稿では,複数のコンポーネントで構成され,それぞれ異なる解像度で学習し,異なる時間スケールへの影響をモデル化する新しいガウス過程状態空間アーキテクチャを提案する。
この結合モデルは適応スケールでの時間のトラバースを可能にし、複雑なダイナミクスを持つ任意に長いシーケンスの効率的な推論を提供する。
半合成データとエンジンモデリングタスクに新しい手法をベンチマークする。
どちらの実験でも、このアプローチは単一のタイムスケールでのみ動作する最先端の代替品と比較できる。
関連論文リスト
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - TMPQ-DM: Joint Timestep Reduction and Quantization Precision Selection for Efficient Diffusion Models [40.5153344875351]
我々はTMPQ-DMを導入し、タイムステップの削減と量子化を共同で最適化し、優れた性能・効率のトレードオフを実現する。
時間段階の削減のために、デノナイジング過程の非一様性に合わせた非一様グルーピングスキームを考案する。
量子化の観点では、最終的な生成性能に対するそれぞれの貢献に基づいて、異なる層に異なるビット幅を割り当てる、きめ細かいレイヤーワイズアプローチを採用する。
論文 参考訳(メタデータ) (2024-04-15T07:51:40Z) - Neural Dynamical Operator: Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods [0.0]
本稿では、空間と時間の両方で連続的なニューラルダイナミクス演算子と呼ばれるデータ駆動モデリングフレームワークを提案する。
神経力学演算子の鍵となる特徴は、空間的および時間的離散化の両方に関して分解能不変性である。
提案手法は,ハイブリッド最適化方式により,より長期統計量の予測が可能であることを示す。
論文 参考訳(メタデータ) (2023-11-20T14:31:18Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5は、長距離時間モデリングのための効率的な変種である。
トランスフォーマーとConvNISTTMは、長い水平移動実験において、ConvLSTMより3倍速く、トランスフォーマーより400倍速くサンプルを生成する一方で、大幅に性能が向上した。
論文 参考訳(メタデータ) (2023-10-30T16:11:06Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - Applying Regularized Schr\"odinger-Bridge-Based Stochastic Process in
Generative Modeling [0.0]
本研究は,時間ステップ数とトレーニング時間を削減し,双方向プロセスと時間ステップ数との整合性を確保するための正規化条件を提案する。
この正規化を様々なタスクに適用することにより、より高速なサンプリング速度のプロセスに基づく生成モデリングの可能性を確認することができる。
論文 参考訳(メタデータ) (2022-08-15T11:52:33Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Quantum dynamics simulations beyond the coherence time on NISQ hardware
by variational Trotter compression [0.0]
我々は,今日のIBM量子ハードウェア上でのハイゼンベルクモデルの時間後力学シミュレーションを実演する。
本稿では,現在のハードウェア上で必要なコスト関数,時間進化状態と変動状態の重なりを計測する方法を示す。
実ハードウェア上でのシミュレーションの実施に加えて,ノイズのない,ノイズの多い古典シミュレーションを用いて,アルゴリズムの性能とスケーリング挙動について検討する。
論文 参考訳(メタデータ) (2021-12-23T15:44:47Z) - Spatio-Temporal Variational Gaussian Processes [26.60276485130467]
時空間フィルタリングと自然変動推論を組み合わせたガウス過程推論にスケーラブルなアプローチを導入する。
還元された誘導点集合上で状態空間モデルを構成するスパース近似を導出する。
分離可能なマルコフカーネルの場合、完全スパースケースは標準変分GPを正確に回復する。
論文 参考訳(メタデータ) (2021-11-02T16:53:31Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。