論文の概要: Generative Learning for Slow Manifolds and Bifurcation Diagrams
- arxiv url: http://arxiv.org/abs/2504.20375v1
- Date: Tue, 29 Apr 2025 02:38:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.72407
- Title: Generative Learning for Slow Manifolds and Bifurcation Diagrams
- Title(参考訳): Slow Manifold と Bifurcation Diagram の生成学習
- Authors: Ellis R. Crabtree, Dimitris G. Giovanis, Nikolaos Evangelou, Juan M. Bello-Rivas, Ioannis G. Kevrekidis,
- Abstract要約: 条件付きスコアベース生成モデル(cSGM)は、あるラベルに条件付けされた対象分布から可塑性データを生成する能力を実証している。
本稿では,cSGMを用いて低次元(高次)スロー多様体を高速に初期化するためのフレームワークを提案する。
この条件付きサンプリングは、還元されたスローマンフォールドの幾何を明らかにするのに役立ち、あるいは分岐図において、''' の欠落した定常状態のセグメントをほぼ満たすのに役立つ。
- 参考スコア(独自算出の注目度): 0.35587965024910395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In dynamical systems characterized by separation of time scales, the approximation of so called ``slow manifolds'', on which the long term dynamics lie, is a useful step for model reduction. Initializing on such slow manifolds is a useful step in modeling, since it circumvents fast transients, and is crucial in multiscale algorithms alternating between fine scale (fast) and coarser scale (slow) simulations. In a similar spirit, when one studies the infinite time dynamics of systems depending on parameters, the system attractors (e.g., its steady states) lie on bifurcation diagrams. Sampling these manifolds gives us representative attractors (here, steady states of ODEs or PDEs) at different parameter values. Algorithms for the systematic construction of these manifolds are required parts of the ``traditional'' numerical nonlinear dynamics toolkit. In more recent years, as the field of Machine Learning develops, conditional score-based generative models (cSGMs) have demonstrated capabilities in generating plausible data from target distributions that are conditioned on some given label. It is tempting to exploit such generative models to produce samples of data distributions conditioned on some quantity of interest (QoI). In this work, we present a framework for using cSGMs to quickly (a) initialize on a low-dimensional (reduced-order) slow manifold of a multi-time-scale system consistent with desired value(s) of a QoI (a ``label'') on the manifold, and (b) approximate steady states in a bifurcation diagram consistent with a (new, out-of-sample) parameter value. This conditional sampling can help uncover the geometry of the reduced slow-manifold and/or approximately ``fill in'' missing segments of steady states in a bifurcation diagram.
- Abstract(参考訳): 時間スケールの分離を特徴とする力学系において、長期力学が横たわるいわゆる ''slow manifolds'' の近似はモデル還元の有用なステップである。
このような遅い多様体を初期化することは、高速な過渡現象を回避し、微細スケール(高速)と粗いスケール(低速)のシミュレーションを交互に行うマルチスケールアルゴリズムにおいて重要であるため、モデリングにおいて有用なステップである。
同様に、パラメータに依存する系の無限時間力学を研究するとき、系誘引子(例えば、その定常状態)は分岐図形の上に置かれる。
これらの多様体をサンプリングすると、異なるパラメータ値における代表的誘引子(以下、ODEやPDEの定常状態)が得られる。
これらの多様体の体系的な構成のためのアルゴリズムは、「伝統的な」数値非線形力学ツールキットの必要部分である。
近年、機械学習の分野が発展するにつれて、条件付きスコアベース生成モデル(cSGM)は、特定のラベルに条件付けされた対象分布から可塑性データを生成する能力を実証している。
このような生成モデルを利用して、ある量(QoI)で条件付けられたデータ分布のサンプルを作成する傾向があります。
本研究では,cSGMを迅速に利用するためのフレームワークを提案する。
a) 多様体上の QoI (a ``label'') の所望値(s) と整合したマルチ時間スケールシステムの低次元(再帰的な)スロー多様体上で初期化し、(b) 分岐図形の(新しい、サンプル外)パラメータ値に整合した近似定常状態を求める。
この条件付きサンプリングは、還元された遅い多様体の幾何や、分岐図における定常状態の「埋蔵」の欠落部分を明らかにするのに役立つ。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps [0.0]
本稿では,マルチスケールシステムにおいて,ディープラーニング技術を用いて正確なタイムステッピング手法を構築する方法について述べる。
結果として得られるフレームワークは、より少ない計算コストで最先端の予測精度を達成する。
論文 参考訳(メタデータ) (2024-04-28T14:05:13Z) - Machine-Learned Closure of URANS for Stably Stratified Turbulence: Connecting Physical Timescales & Data Hyperparameters of Deep Time-Series Models [0.0]
我々は、非定常レイノルズ平均ナビエストークス方程式のクロージャモデリングのための時系列機械学習(ML)法を開発した。
我々は, 均一密度勾配により均一で安定に成層された崩壊SSTを考察した。
MLモデルがSSTの力学を正確に捉えるために必要な最小情報の時間尺度の比率は,流れのレイノルズ数と一致することがわかった。
論文 参考訳(メタデータ) (2024-04-24T18:58:00Z) - Micro-Macro Consistency in Multiscale Modeling: Score-Based Model
Assisted Sampling of Fast/Slow Dynamical Systems [0.0]
物理に基づくマルチ時間動的システムの研究において,サンプリングの高度化のための技術が開発されている。
機械学習の分野では、生成モデルの一般的な目標は、この密度から経験的なサンプルをトレーニングした後、ターゲット密度からサンプリングすることである。
本研究では,SGMをこのような結合フレームワークで利用することにより,マルチスケールな動的システムにおけるサンプリングを改善することができることを示す。
論文 参考訳(メタデータ) (2023-12-10T00:46:37Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
マルコフ連鎖モンテカルロ法による新しい推論アルゴリズムを提案する。
提示されたギブスサンプルは、正確な連続時間後処理から試料を効率的に得ることができる。
論文 参考訳(メタデータ) (2022-05-18T09:03:00Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - Traversing Time with Multi-Resolution Gaussian Process State-Space
Models [17.42262122708566]
本稿では,複数のコンポーネントで構成されたガウス的プロセス状態空間アーキテクチャを提案する。
半合成データとエンジンモデリングタスクに新しい手法をベンチマークする。
どちらの実験でも、我々のアプローチは1つの時間スケールでしか動作しない最先端の代替手段と良好に比較できる。
論文 参考訳(メタデータ) (2021-12-06T18:39:27Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。