論文の概要: Pragmatic Implementation of Reinforcement Algorithms For Path Finding On
Raspberry Pi
- arxiv url: http://arxiv.org/abs/2112.03577v1
- Date: Tue, 7 Dec 2021 09:00:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-08 21:50:45.960743
- Title: Pragmatic Implementation of Reinforcement Algorithms For Path Finding On
Raspberry Pi
- Title(参考訳): Raspberry Piの経路探索のための強化アルゴリズムの実用的実装
- Authors: Serena Raju, Sherin Shibu, Riya Mol Raji and Joel Thomas
- Abstract要約: 提案システムは,Raspberry Piが制御する4輪駆動非ホロノミックロボットのグリッドマップを容易にするために,コスト効率のよいアプローチである。
Q学習とDeep-Q学習は、静的障害物との衝突を避けながら最適な経路を見つけるために使用される。
また,方向の配列を正確な動きにデコードする新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, pragmatic implementation of an indoor autonomous delivery
system that exploits Reinforcement Learning algorithms for path planning and
collision avoidance is audited. The proposed system is a cost-efficient
approach that is implemented to facilitate a Raspberry Pi controlled
four-wheel-drive non-holonomic robot map a grid. This approach computes and
navigates the shortest path from a source key point to a destination key point
to carry out the desired delivery. Q learning and Deep-Q learning are used to
find the optimal path while avoiding collision with static obstacles. This work
defines an approach to deploy these two algorithms on a robot. A novel
algorithm to decode an array of directions into accurate movements in a certain
action space is also proposed. The procedure followed to dispatch this system
with the said requirements is described, ergo presenting our proof of concept
for indoor autonomous delivery vehicles.
- Abstract(参考訳): 本稿では,経路計画と衝突回避のために強化学習アルゴリズムを活用する屋内自律配送システムの実用的実装について述べる。
提案システムは,Raspberry Piが制御する4輪駆動非ホロノミックロボットのグリッドマップを容易にするために,コスト効率のよいアプローチである。
このアプローチは、ソースキーポイントから目的地キーポイントまでの最も短いパスを計算し、ナビゲートして、望ましいデリバリを実行する。
Q学習とDeep-Q学習は、静的障害物との衝突を避けながら最適な経路を見つけるために使用される。
この2つのアルゴリズムをロボットにデプロイするアプローチを定義する。
また,ある行動空間における方向の配列を正確な動きにデコードする新しいアルゴリズムを提案する。
続いて,このシステムに要件を課す手順を述べるとともに,室内における自律配送車の概念実証を提示した。
関連論文リスト
- FootstepNet: an Efficient Actor-Critic Method for Fast On-line Bipedal Footstep Planning and Forecasting [0.0]
本研究では,障害物のある環境下を移動するための効率的なフットステップ計画法を提案する。
また,地域目標の異なる候補に到達するのに必要なステップ数を素早く推定できる予測手法を提案する。
本研究は,RoboCup 2023コンペティションにおいて,シミュレーション結果と,子供サイズのヒューマノイドロボットへの展開によるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-19T09:48:18Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning
with Temporal Logic Task Specifications [11.812602599752294]
未知の構造を持つ環境で動作している未知のダイナミクスを持つロボットについて考察する。
我々の目標は、オートマトン符号化されたタスクを満足する確率を最大化する制御ポリシーを合成することである。
そこで本研究では,制御ポリシーを類似手法と比較して顕著に高速に学習できるDRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:59:58Z) - Reinforcement learning based local path planning for mobile robot [0.0]
オフラインのシナリオでは、環境マップが一度作成され、このマップ上に固定された経路計画が作成され、ターゲットに到達する。
オンラインのシナリオでは、センサーから得られる知覚データを用いて地図を使わずに、ロボットは所定の目標に向かって動的に移動する。
深層ニューラルネットワークを用いたQ-Learning手法は、前述のモバイルロボットナビゲーションの問題に対する新たな解決策として使用される。
論文 参考訳(メタデータ) (2023-10-24T18:26:25Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
パッシブル障害物認識(Passable Obstacles Aware, POA)プランナーは, 乱雑な環境下での二輪ロボットのナビゲーション手法である。
我々のアルゴリズムは、二輪ロボットが通過可能な障害物を通り抜ける道を見つけることを可能にする。
論文 参考訳(メタデータ) (2023-07-16T19:44:27Z) - DDPEN: Trajectory Optimisation With Sub Goal Generation Model [70.36888514074022]
本稿では,エスケープネットワークを用いた微分動的プログラミング(DDPEN)を提案する。
本稿では,環境の入力マップとして,所望の位置とともにコストマップの形で利用する深層モデルを提案する。
このモデルは、目標に導く可能性のある将来の方向を生成し、リアルタイムに実行可能なローカルなミニマを避ける。
論文 参考訳(メタデータ) (2023-01-18T11:02:06Z) - Systematic Comparison of Path Planning Algorithms using PathBench [55.335463666037086]
パスプランニングはモバイルロボティクスの重要な構成要素である。
学習に基づく経路計画アルゴリズムの開発は、急速な成長を遂げている。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2022-03-07T01:52:57Z) - Real-World Application of Various Trajectory Planning Algorithms on MIT
RACECAR [0.0]
3つの経路計画アルゴリズムがMIT RACECARに適用された。
アルゴリズムを比較するシナリオが作成されました。
APFは低処理負荷と単純な動作ロジックのために選択された。
論文 参考訳(メタデータ) (2021-08-17T12:08:49Z) - Prioritized SIPP for Multi-Agent Path Finding With Kinematic Constraints [0.0]
MAPF(Multi-Agent Path Finding)は、ロボティクスと人工知能における長年の問題である。
この問題をある程度緩和する手法を提案する。
論文 参考訳(メタデータ) (2021-08-11T10:42:11Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - PathBench: A Benchmarking Platform for Classical and Learned Path
Planning Algorithms [59.3879573040863]
パスプランニングは、モバイルロボティクスの重要なコンポーネントです。
アルゴリズムを全体的あるいは統一的にベンチマークする試みはほとんど行われていない。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2021-05-04T21:48:18Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
複数の目的地間でリアルタイムに個別の避難経路を生成する屋内避難のための渋滞対応ルーティングソリューションを提案する。
建物内の混雑分布をモデル化するために、ユーザエンド拡張現実(AR)デバイスから避難者の位置を集約して、オンザフライで取得した人口密度マップを用いる。
論文 参考訳(メタデータ) (2020-04-25T22:54:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。