Analysis of ECG data to detect Atrial Fibrillation
- URL: http://arxiv.org/abs/2112.12298v1
- Date: Thu, 23 Dec 2021 01:10:25 GMT
- Title: Analysis of ECG data to detect Atrial Fibrillation
- Authors: Arjun Sridharkumar, Sai Bhargav, Rahul Guntha
- Abstract summary: Atrial fibrillation(termed as AF/Afib henceforth) is a discrete and often rapid heart rhythm that can lead to clots near the heart.
We can detect Afib by ECG signal by the absence of p and inconsistent intervals between R waves as shown in fig(1).
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Atrial fibrillation(termed as AF/Afib henceforth) is a discrete and often
rapid heart rhythm that can lead to clots near the heart. We can detect Afib by
ECG signal by the absence of p and inconsistent intervals between R waves as
shown in fig(1). Existing methods revolve around CNN that are used to detect
afib but most of them work with 12 point lead ECG data where in our case the
health gauge watch deals with single-point ECG data. Twelve-point lead ECG data
is more accurate than a single point. Furthermore, the health gauge watch data
is much noisier. Implementing a model to detect Afib for the watch is a test of
how the CNN is changed/modified to work with real life data
Related papers
- Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Manifold Learning for Personalized and Label-Free Detection of Cardiac Arrhythmias [0.9208007322096533]
We show that nonlinear dimensionality reduction (NLDR) can accommodate medically relevant features in ECG signals.<n>Using the MLII and V1 leads of the MIT-BIH dataset, we demonstrate that NLDR holds much promise for cardiac monitoring.
arXiv Detail & Related papers (2025-06-19T17:39:57Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.
GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.
We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - AnyECG: Foundational Models for Multitask Cardiac Analysis in Real-World Settings [34.078819572852446]
Electrocardiogram (ECG) is highly sensitive in detecting acute heart attacks.
This paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data.
arXiv Detail & Related papers (2024-11-17T17:32:58Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection [7.574088346030774]
This paper focuses on detecting abnormal signals in electrocardi-ograms (ECGs) using only labels from normal signals as training data.
In-spired by self-supervised vision transformers, which learn by dividing images into patches, and masked auto-encoders, we introduce the ECG Heartbeat Anomaly Detection model, EB-GAME.
arXiv Detail & Related papers (2024-04-08T13:01:59Z) - TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network [9.770923451320938]
We propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training.
We introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals.
arXiv Detail & Related papers (2023-12-15T20:27:38Z) - Deep Learning Models for Arrhythmia Classification Using Stacked
Time-frequency Scalogram Images from ECG Signals [4.659427498118277]
This paper proposes an automated AI based system for ECG-based arrhythmia classification.
Deep learning based solution has been proposed for ECG-based arrhythmia classification.
arXiv Detail & Related papers (2023-12-01T03:16:32Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions.
Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders.
This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training.
arXiv Detail & Related papers (2023-08-03T09:16:57Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Weak Supervision for Affordable Modeling of Electrocardiogram Data [20.646500951182247]
Analysing electrocardiograms (ECGs) is an inexpensive and non-invasive, yet powerful way to diagnose heart disease.
ECG studies using Machine Learning to automatically detect abnormal heartbeats so far depend on large, manually annotated datasets.
We explore the use of multiple weak supervision sources to learn diagnostic models of abnormal heartbeats via human designeds.
arXiv Detail & Related papers (2022-01-09T06:08:05Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.