論文の概要: Neurons as hierarchies of quantum reference frames
- arxiv url: http://arxiv.org/abs/2201.00921v1
- Date: Tue, 4 Jan 2022 00:53:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-02 07:54:50.272991
- Title: Neurons as hierarchies of quantum reference frames
- Title(参考訳): 量子参照フレームの階層としてのニューロン
- Authors: Chris Fields, James F. Glazebrook and Michael Levin
- Abstract要約: 我々は、シナプス、樹状突起および軸索過程、ニューロン、局所ネットワークの均一でスケーラブルな表現を開発する。
発達的・再生的文脈において、モデルがどのように非神経細胞や組織に一般化されるのかを概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conceptual and mathematical models of neurons have lagged behind empirical
understanding for decades. Here we extend previous work in modeling biological
systems with fully scale-independent quantum information-theoretic tools to
develop a uniform, scalable representation of synapses, dendritic and axonal
processes, neurons, and local networks of neurons. In this representation,
hierarchies of quantum reference frames act as hierarchical active-inference
systems. The resulting model enables specific predictions of correlations
between synaptic activity, dendritic remodeling, and trophic reward. We
summarize how the model may be generalized to nonneural cells and tissues in
developmental and regenerative contexts.
- Abstract(参考訳): ニューロンの概念と数学的モデルは、数十年間経験的理解に遅れを取ってきた。
ここでは,完全なスケールに依存しない量子情報理論ツールを用いて生体システムをモデル化し,シナプスの均一でスケーラブルな表現,樹状および軸索のプロセス,ニューロン,およびニューロンの局所ネットワークを構築する。
この表現において、量子参照フレームの階層は階層的アクティブ推論システムとして機能する。
その結果,シナプス活動,デンドリティックリモデリング,トロフィー報酬の相関関係の予測が可能となった。
発達的および再生的文脈において、このモデルがどのように非神経細胞や組織に一般化されるのかを概説する。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Exploring Biological Neuronal Correlations with Quantum Generative Models [0.0]
生体神経活動の空間的・時間的相関を捉える合成データを生成するための量子生成モデルフレームワークを提案する。
本モデルは,従来の手法に比べてトレーニング可能なパラメータが少なく,信頼性の高い結果が得られることを示す。
論文 参考訳(メタデータ) (2024-09-13T18:00:06Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Equivalence of Additive and Multiplicative Coupling in Spiking Neural
Networks [0.0]
スパイキングニューラルネットワークモデルは、生物学的ニューロンの回路の創発的集団力学を特徴付ける。
加法結合を持つスパイクニューラルネットワークモデルは乗法結合を持つモデルと等価であることを示す。
論文 参考訳(メタデータ) (2023-03-31T20:19:11Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
クロス周波数カップリング(CFC)は、ニューロンの集団間での情報統合と関連している。
我々は,海馬および大脳皮質における観測された$theta - gamma$振動回路の計算的役割を予測するCFCのモデルを構築した。
CFCの存在は, 可塑性シナプスによって結合された神経細胞のメモリ容量を増加させることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:13:36Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - Modeling the Nervous System as An Open Quantum System [4.590533239391236]
本稿では,ニューロン同士の相互作用をシミュレートする多ニューロン相互作用系のニューラルネットワークモデルを提案する。
我々は、デンドライト、軸索、シナプスを含む神経細胞周囲を物理的にモデル化する。
このモデルはランダムニューロンとニューロンの相互作用を発生させることができ、神経系における情報伝達の過程を物理的に記述するのに適している。
論文 参考訳(メタデータ) (2021-03-18T10:17:09Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。