論文の概要: Tk-merge: Computationally Efficient Robust Clustering Under General
Assumptions
- arxiv url: http://arxiv.org/abs/2201.06391v1
- Date: Mon, 17 Jan 2022 13:05:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 18:40:11.102015
- Title: Tk-merge: Computationally Efficient Robust Clustering Under General
Assumptions
- Title(参考訳): Tk-merge: 計算効率の良いロバストクラスタリング
- Authors: Luca Insolia and Domenico Perrotta
- Abstract要約: トリミングされたk平均と階層的アグロメレーションに基づく2段階のハイブリッドロバストクラスタリングアルゴリズムを提案する。
また、本手法の自然な一般化と、データ駆動方式で汚染量を推定する適応的な手順を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address general-shaped clustering problems under very weak parametric
assumptions with a two-step hybrid robust clustering algorithm based on trimmed
k-means and hierarchical agglomeration. The algorithm has low computational
complexity and effectively identifies the clusters also in presence of data
contamination. We also present natural generalizations of the approach as well
as an adaptive procedure to estimate the amount of contamination in a
data-driven fashion. Our proposal outperforms state-of-the-art robust,
model-based methods in our numerical simulations and real-world applications
related to color quantization for image analysis, human mobility patterns based
on GPS data, biomedical images of diabetic retinopathy, and functional data
across weather stations.
- Abstract(参考訳): トリミングk平均と階層的凝集に基づく2段階のハイブリッドロバストクラスタリングアルゴリズムを用いて,非常に弱いパラメトリック仮定下での一般型クラスタリング問題に対処する。
このアルゴリズムは計算複雑性が低く、データ汚染の有無でクラスタを効果的に識別する。
また、本手法の自然な一般化と、データ駆動方式で汚染量を推定する適応的な手順を提案する。
提案手法は, 画像解析のカラー量子化, GPSデータに基づく人体移動パターン, 糖尿病網膜症の生体画像, 気象観測所間の機能データなど, 現状の頑健なモデルベース手法よりも優れている。
関連論文リスト
- Hierarchical and Density-based Causal Clustering [6.082022112101251]
本稿では,既成のアルゴリズムを用いて簡易かつ容易に実装可能なプラグイン推定器を提案する。
さらに,それらの収束率について検討し,因果クラスタリングの付加コストが基本的に結果回帰関数の推定誤差であることを示す。
論文 参考訳(メタデータ) (2024-11-02T14:01:04Z) - Simple and Scalable Algorithms for Cluster-Aware Precision Medicine [0.0]
共同クラスタリングと埋め込みに対するシンプルでスケーラブルなアプローチを提案する。
この新しいクラスタ対応の埋め込みアプローチは、現在の共同埋め込みとクラスタリング法の複雑さと限界を克服する。
当社のアプローチでは,ユーザが希望するクラスタ数を選択する必要はなく,階層的にクラスタ化された埋め込みの解釈可能なデンドログラムを生成する。
論文 参考訳(メタデータ) (2022-11-29T19:27:26Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - Orthogonalization of data via Gromov-Wasserstein type feedback for
clustering and visualization [5.44192123671277]
直交化プロセスによるデータのクラスタリングと可視化に適応的な手法を提案する。
本手法は,パラメータ値に対して一意な固定点にグローバルに収束することを示す。
本手法は,ヒトの専門的分類と一致して生物学的に意味のあるクラスタリング結果を生成する。
論文 参考訳(メタデータ) (2022-07-25T15:52:11Z) - Multiway Spherical Clustering via Degree-Corrected Tensor Block Models [8.147652597876862]
推定精度を保証した次数補正ブロックモデルを開発した。
特に,3次以上のテンソルに対してのみ,本質的な統計的-計算的ギャップが生じることを示す。
本手法の有効性を2つのデータアプリケーションを用いて実証した。
論文 参考訳(メタデータ) (2022-01-19T03:40:22Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Exact Clustering in Tensor Block Model: Statistical Optimality and
Computational Limit [10.8145995157397]
高階クラスタリングは、マルチウェイデータセットの異種サブ構造を特定することを目的とする。
非計算と問題の性質は統計学と統計学の両方に重大な課題をもたらす。
論文 参考訳(メタデータ) (2020-12-18T00:48:27Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。