論文の概要: Light cone tensor network and time evolution
- arxiv url: http://arxiv.org/abs/2201.08402v3
- Date: Tue, 6 Dec 2022 12:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 07:58:58.406631
- Title: Light cone tensor network and time evolution
- Title(参考訳): 光円錐テンソルネットワークと時間進化
- Authors: Miguel Fr\'ias-P\'erez and Mari Carmen Ba\~nuls
- Abstract要約: 観測対象を表すテンソルネットワークの正確な光円錐構造を利用する収縮戦略を提案する。
この戦略は, [Phys. Rev. A 91, 032306] で提案されたハイブリッド・トランケーションと組み合わせることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transverse folding algorithm [Phys. Rev. Lett. 102, 240603] is a tensor
network method to compute time-dependent local observables in
out-of-equilibrium quantum spin chains that can sometimes overcome the
limitations of matrix product states. We present a contraction strategy that
makes use of the exact light cone structure of the tensor network representing
the observables. The strategy can be combined with the hybrid truncation
proposed for global quenches in [Phys. Rev. A 91, 032306], which significantly
improves the efficiency of the method. We demonstrate the performance of this
transverse light cone contraction also for transport coefficients, and discuss
how it can be extended to other dynamical quantities.
- Abstract(参考訳): 逆折り畳みアルゴリズム [Phys. Rev. Lett. 102, 240603] は、行列積状態の制限を克服できる平衡外量子スピン鎖における時間依存の局所観測値を計算するテンソルネットワーク法である。
本稿では,観測対象を表すテンソルネットワークの正確な光円錐構造を利用した縮小戦略を提案する。
この戦略は,グローバル・クエンチに提案されているハイブリッド・トランザクションと組み合わせることで,効率を大幅に向上させることができる。
輸送係数についても,この横方向光円錐収縮の性能を実証し,他の動的量にまで拡張する方法について議論する。
関連論文リスト
- Simulation of Spin Chains with off-diagonal Coupling Using Inchworm Method [0.0]
本研究では, 閉量子スピン鎖と近接結合の動的シミュレーションを行い, チェーン内の各スピンとハーモニックバスの関連性について検討した。
長期シミュレーションにおける計算コストとメモリコストを削減するため,スピン鎖の密度行列を効率的に表現するためにテンソルトレイン表現を適用した。
論文 参考訳(メタデータ) (2024-07-05T09:07:39Z) - Quantum correlation functions through tensor network path integral [0.0]
テンソルネットワークは、オープン量子系の平衡相関関数を計算するために利用される。
溶媒が量子系に与える影響は、影響関数によって取り込まれている。
この手法の設計と実装は、速度理論、シンメトリゼーションされたスピン相関関数、動的感受性計算、量子熱力学からの図解とともに議論される。
論文 参考訳(メタデータ) (2023-08-21T07:46:51Z) - Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram
Iteration [122.51142131506639]
循環行列理論を用いて畳み込み層のスペクトルノルムに対して、精密で高速で微分可能な上界を導入する。
提案手法は, 精度, 計算コスト, スケーラビリティの観点から, 他の最先端手法よりも優れていることを示す。
これは畳み込みニューラルネットワークのリプシッツ正則化に非常に効果的であり、並行アプローチに対する競合的な結果である。
論文 参考訳(メタデータ) (2023-05-25T15:32:21Z) - Regularized scheme of time evolution tensor network algorithms [0.0]
量子格子系の時間発展をシミュレートするために正規化分解法を提案する。
プロパゲーターの結果として生じるコンパクト構造は、高階ベーカー・カンベル・ハウスドルフ級数を示す。
論文 参考訳(メタデータ) (2022-08-06T03:38:37Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - A tensor network representation of path integrals: Implementation and
analysis [0.0]
ファインマン・ヴァーノン効果関数を含む経路積分シミュレーションのテンソルネットワークに基づく新しい分解法を提案する。
影響関数によって導入された有限の一時的な非局所相互作用は、行列積状態表現を用いて非常に効率的に捉えることができる。
AP-TNPIフレームワークの柔軟性により、非平衡量子力学のための経路積分法ファミリーに新たな期待が持てる。
論文 参考訳(メタデータ) (2021-06-23T16:41:54Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Optimizing Mode Connectivity via Neuron Alignment [84.26606622400423]
経験的に、損失関数の局所ミニマは、損失がほぼ一定であるようなモデル空間の学習曲線で接続することができる。
本稿では,ネットワークの重み変化を考慮し,対称性がランドスケープ・コネクティビティに与える影響を明らかにするための,より一般的な枠組みを提案する。
論文 参考訳(メタデータ) (2020-09-05T02:25:23Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
量子コンピューティングは、量子色力学のような強い相互作用する場の理論を物理的時間進化でシミュレートする機会を与えるかもしれない。
現在の計算と同様に、量子計算戦略は依然として有限のシステムサイズに制限を必要とする。
我々は、ミンコフスキー符号量1+1ドルの体積効果を定量化し、これらが体系的不確実性の重要な源であることを示す。
論文 参考訳(メタデータ) (2020-07-01T17:43:11Z) - Controllable Orthogonalization in Training DNNs [96.1365404059924]
直交性はディープニューラルネットワーク(DNN)のトレーニングに広く用いられている。
本稿では,ニュートン反復(ONI)を用いた計算効率が高く,数値的に安定な直交化法を提案する。
本稿では,画像分類ネットワークの性能向上のために,最適化の利点と表現能力の低下との間に最適なトレードオフを与えるために,直交性を効果的に制御する手法を提案する。
また、ONIは、スペクトル正規化と同様に、ネットワークのリプシッツ連続性を維持することにより、GAN(Generative Adversarial Network)のトレーニングを安定化させることを示した。
論文 参考訳(メタデータ) (2020-04-02T10:14:27Z) - Efficient variational contraction of two-dimensional tensor networks
with a non-trivial unit cell [0.0]
テンソルネットワーク状態は、強い相関の量子モデルとシステムを忠実にキャプチャする効率的な状態のクラスを提供する。
我々は最近提案された一次元量子格子をキャプチャするための変分行列積状態アルゴリズムを一般化する。
このアルゴリズムの重要な性質は、単位セルのサイズを指数的にではなく線形にスケールする計算努力である。
論文 参考訳(メタデータ) (2020-03-02T19:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。