論文の概要: Basic Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2201.10574v7
- Date: Wed, 11 Sep 2024 16:41:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 22:35:44.018480
- Title: Basic Quantum Algorithms
- Title(参考訳): 基本量子アルゴリズム
- Authors: Renato Portugal,
- Abstract要約: 量子コンピューティングは急速に進化しており、理論の基礎を再検討し、書き直し、更新せざるを得ない。
基本量子アルゴリズムは、初期の量子アルゴリズムを再考する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is evolving so rapidly that it forces us to revisit, rewrite, and update the foundations of the theory. Basic Quantum Algorithms revisits the earliest quantum algorithms. The journey began in 1985 with Deutsch attempting to evaluate a function at two domain points simultaneously. Then, in 1992, Deutsch and Jozsa created a quantum algorithm that determines whether a Boolean function is constant or balanced. The following year, Bernstein and Vazirani realized that the same algorithm could be used to identify a specific Boolean function within a set of linear Boolean functions. In 1994, Simon introduced a novel quantum algorithm that determined whether a function was one-to-one or two-to-one exponentially faster than any classical algorithm for the same problem. That same year, Shor developed two groundbreaking quantum algorithms for integer factoring and calculating discrete logarithms, posing a threat to the widely used cryptography methods. In 1995, Kitaev proposed an alternative version of Shor's algorithms that proved valuable in numerous other applications. The following year, Grover devised a quantum search algorithm that was quadratically faster than its classical equivalent. With an emphasis on the circuit model, this work provides a detailed description of all these remarkable algorithms.
- Abstract(参考訳): 量子コンピューティングは急速に進化しており、理論の基礎を再検討し、書き直し、更新せざるを得ない。
基本量子アルゴリズムは、初期の量子アルゴリズムを再考する。
この旅は1985年にDeutschが2つの領域で関数を同時に評価することから始まった。
1992年、DeutschとJozsaはブール関数が定数か平衡かを決定する量子アルゴリズムを開発した。
翌年、ベルンシュタインとヴァジラニは同じアルゴリズムを使って線型ブール関数の集合内の特定のブール関数を特定できることが分かった。
1994年、サイモンは関数がどの古典的アルゴリズムよりも指数関数的に速いかを決定する新しい量子アルゴリズムを導入した。
同年、ショアは整数因数分解と離散対数計算のための2つの画期的な量子アルゴリズムを開発し、広く使われている暗号法に脅威を与えた。
1995年、KitaevはShorのアルゴリズムの代替版を提案し、他の多くのアプリケーションで有用であることが証明された。
翌年、グロバーは量子探索アルゴリズムを考案した。
回路モデルに重点を置いて、この研究はこれらの顕著なアルゴリズムの詳細な記述を提供する。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Unconditional correctness of recent quantum algorithms for factoring and computing discrete logarithms [0.0]
2023年、レジチェフはショアのアルゴリズムの多次元バージョンを提案し、より少ない量子ゲートを必要とした。
解析的数論の道具を用いて、この予想のバージョンを証明する。
その結果、この改良された量子アルゴリズムの正確性の無条件証明が得られる。
論文 参考訳(メタデータ) (2024-04-25T09:30:19Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
量子アリーモト・ブラフトアルゴリズムをRamakrishnanらにより一般化する。
3つの量子系を持つ量子情報ボトルネックに対して,我々のアルゴリズムを適用した。
数値解析により,我々のアルゴリズムはアルゴリズムよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-19T00:06:11Z) - Quantum Multiplication Algorithm Based on the Convolution Theorem [0.0]
時間複雑性を持つ整数乗算の量子アルゴリズムをO(sqrtnlog2 n)$で提案する。
Harveyアルゴリズムとは異なり、我々のアルゴリズムは極大数にのみ適用できるという制限はない。
また、古典的乗法アルゴリズムの歴史と発展を概観し、量子資源がこの根本的な問題に対してどのように新たな視点と可能性を提供できるかを探求する動機付けとなる。
論文 参考訳(メタデータ) (2023-06-14T12:40:54Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
グラフ編集距離(GED: Graph Edit Distance)は、2つのグラフ間の(異なる)相似性の度合いを測定する。
本稿では、GED計算における2つの量子アプローチの比較研究について述べる。
論文 参考訳(メタデータ) (2021-11-19T12:35:26Z) - Quantum Inspired Adaptive Boosting [0.0]
量子アンサンブル法は古典的アルゴリズムに勝らないことを示す。
本稿では,量子アンサンブル法と適応的なブースティングを組み合わせた手法を提案する。
アルゴリズムはテストされ、公開データセット上のAdaBoostアルゴリズムに匹敵することがわかった。
論文 参考訳(メタデータ) (2021-02-01T16:33:14Z) - Characterization of exact one-query quantum algorithms (ii): for partial
functions [0.2741266294612775]
クエリモデル(またはブラックボックスモデル)は、古典コンピューティングと量子コンピューティングの両方のコミュニティから多くの注目を集めている。
通常、量子の利点は、古典的なアルゴリズムよりもクエリの複雑さが高い量子アルゴリズムを提示することで明らかにされる。
例えば、Deutsch-Jozsaアルゴリズム、Simonアルゴリズム、Groverアルゴリズムといったよく知られた量子アルゴリズムは、クエリ複雑性の観点から量子コンピューティングのかなりの利点を示している。
論文 参考訳(メタデータ) (2020-08-27T09:06:34Z) - Quadratic Sieve Factorization Quantum Algorithm and its Simulation [16.296638292223843]
我々は、"Quadratic Sieve"という2番目の高速な古典的分解アルゴリズムの量子変種を設計した。
我々は,高レベルプログラミング言語Mathematicaを用いた量子化二次シーブアルゴリズムのシミュレーションフレームワークを構築した。
論文 参考訳(メタデータ) (2020-05-24T07:14:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。