論文の概要: Physically Consistent Neural ODEs for Learning Multi-Physics Systems
- arxiv url: http://arxiv.org/abs/2211.06130v1
- Date: Fri, 11 Nov 2022 11:20:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 16:50:51.529327
- Title: Physically Consistent Neural ODEs for Learning Multi-Physics Systems
- Title(参考訳): マルチフィジカルシステム学習のための物理的に一貫したニューラルode
- Authors: Muhammad Zakwan, Loris Di Natale, Bratislav Svetozarevic, Philipp
Heer, Colin N. Jones, and Giancarlo Ferrari Trecate
- Abstract要約: 本稿では, 可逆ポート・ハミルトニアンシステム (IPHS) の枠組みを利用する。
データからパラメータを学習するために,PC-NODE(Physically Consistent NODE)を提案する。
提案手法の有効性を実世界の実測値から建物熱力学を学習し,その有効性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the immense success of neural networks in modeling system dynamics
from data, they often remain physics-agnostic black boxes. In the particular
case of physical systems, they might consequently make physically inconsistent
predictions, which makes them unreliable in practice. In this paper, we
leverage the framework of Irreversible port-Hamiltonian Systems (IPHS), which
can describe most multi-physics systems, and rely on Neural Ordinary
Differential Equations (NODEs) to learn their parameters from data. Since IPHS
models are consistent with the first and second principles of thermodynamics by
design, so are the proposed Physically Consistent NODEs (PC-NODEs).
Furthermore, the NODE training procedure allows us to seamlessly incorporate
prior knowledge of the system properties in the learned dynamics. We
demonstrate the effectiveness of the proposed method by learning the
thermodynamics of a building from the real-world measurements and the dynamics
of a simulated gas-piston system. Thanks to the modularity and flexibility of
the IPHS framework, PC-NODEs can be extended to learn physically consistent
models of multi-physics distributed systems.
- Abstract(参考訳): データからシステムのダイナミクスをモデル化するニューラルネットワークの成功にもかかわらず、それらは物理に依存しないブラックボックスのままであることが多い。
物理的システムの特定の場合、それらは物理的に矛盾した予測を行うため、実際は信頼できない。
本稿では,多物理系を記述可能な非可逆ポート・ハミルトンシステム(IPHS)の枠組みを活用し,そのパラメータをデータから学習するためにニューラル正規微分方程式(NODE)を利用する。
IPHSモデルは設計による熱力学の第一原理と第二原理と整合性があるので、提案されている物理一貫性NODE(PC-NODE)も同様である。
さらに、ノードトレーニング手順により、学習したダイナミクスにシステム特性の事前知識をシームレスに取り入れることができる。
本研究では,実世界の実測から建物の熱力学とシミュレーションガス・ピストンシステムのダイナミクスを学習し,提案手法の有効性を実証する。
IPHSフレームワークのモジュラリティと柔軟性により、PC-NODEはマルチ物理分散システムの物理的に一貫したモデルを学ぶために拡張できる。
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Neural Networks with Physics-Informed Architectures and Constraints for
Dynamical Systems Modeling [19.399031618628864]
軌道データから動的モデルを学ぶためのフレームワークを開発する。
出力の値とモデルの内部状態に制約を課す。
様々な力学系に対する提案手法の利点を実験的に実証した。
論文 参考訳(メタデータ) (2021-09-14T02:47:51Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
物理構造を符号化するディープラーニングフレームワークが,PDEシステム体制に関する様々な問題に適用可能であることを示す。
物理を符号化する結果の学習パラダイムは、広範囲な数値実験により、高い精度、堅牢性、解釈可能性、一般化可能性を示す。
論文 参考訳(メタデータ) (2021-06-09T03:02:20Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
各種グレーボックス設定における動的モデルの学習方法であるNeural Dynamical Systems (NDS)を紹介する。
NDSはニューラルネットワークを使用してシステムの自由パラメータを推定し、残余項を予測し、将来状態を予測するために時間とともに数値的に統合する。
論文 参考訳(メタデータ) (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。