Coexistence of coupling-induced transparency and absorption of
transmission signals in magnon-mediated photon-photon coupling
- URL: http://arxiv.org/abs/2202.02667v1
- Date: Sun, 6 Feb 2022 00:56:26 GMT
- Title: Coexistence of coupling-induced transparency and absorption of
transmission signals in magnon-mediated photon-photon coupling
- Authors: Biswanath Bhoi, Bosung Kim, Hae-Chan Jeon and Sang-Koog Kim
- Abstract summary: Coexistence of coupling-induced transparency (CIT) and absorption (CIA) of signals in magnon-mediated photon-photon coupling was experimentally determined.
This work, promisingly, can provide guidance for design of efficient, flexible, and well-controllable photon-magnonic devices.
- Score: 3.6704226968275258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coexistence of coupling-induced transparency (CIT) and absorption (CIA) of
signals in magnon-mediated photon-photon coupling was experimentally determined
in a planar hybrid structure consisting of a yttrium iron garnet (YIG) film and
three concentric inverted-split-ring resonators (ISRRs). The experimental
observation of simultaneous CIT and CIA phenomena was ascribed to
magnon-mediated photon-photon coupling between the individually decoupled
ISRRs. In order to capture the generic physics of the observed interactions, we
constructed an appropriate analytical model based on the balance between the
coherent and dissipative multiple-paths interactions, which model precisely
reproduced both the CIT and CIA experimentally observed from a single hybrid
system. This work, promisingly, can provide guidance for design of efficient,
flexible, and well-controllable photon-magnonic devices that are highly in
demand for applications to quantum technologies currently under development.
Related papers
- Unveiling photon-photon coupling induced transparency and absorption [0.0]
This study presents the theoretical foundations of an analogous electromagnetically induced transparency (EIT) and absorption (EIA) respectively.
We provide a concise phenomenological description with analytical expressions for transmission spectra and dispersion elucidating how the interplay of coherent and dissipative interactions in a coupled system results in the emergence of level repulsion and attraction, corresponding to CIT and CIA, respectively.
arXiv Detail & Related papers (2024-06-28T09:18:30Z) - Single site-controlled inverted pyramidal InGaAs QD-nanocavity operating
at the onset of the strong coupling regime [15.529347711119406]
Single site-controlled inverted pyramidal InGaAs QD at the antinode of a GaAs photonic crystal cavity offers great promise for practical on-chip photonic quantum information processing.
Here, we reveal the onset of phonon-mediated coherent exciton-photon interaction on our tailored single site-controlled InGaAs QD.
arXiv Detail & Related papers (2023-04-21T21:29:17Z) - Observation of oscillatory Raman gain associated with two-photon Rabi
oscillations of nanofiber-coupled atoms [0.0]
Quantum emitters with a $Lambda$-type level structure enable numerous protocols and applications in quantum science and technology.
Here, we drive two-photon Rabi oscillations between the two ground states of cesium atoms.
We study the dependence of the two-photon Rabi frequency on the system parameters and observe Autler-Townes splitting in the probe transmission spectrum.
arXiv Detail & Related papers (2022-07-01T13:59:26Z) - Entangled biphoton enhanced double quantum coherence signal as a probe
for cavity polariton correlations in presence of phonon induced dephasing [0.0]
We propose a biphoton entanglement-enhanced multidimensional spectroscopic technique as a probe for the dissipative polariton dynamics in the ultrafast regime.
The proposed technique is shown to be particularly sensitive to inter-manifold polariton coherence between the two and one-excitation subspaces.
It is demonstrated to be able to monitor the dynamical role of cavity-mediated excitonic correlations, and dephasing in the presence of phonon-induced dissipation.
arXiv Detail & Related papers (2022-05-31T11:25:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - A cavity-QED quantum simulator of dynamical phases of a BCS
superconductor [0.0]
We simulate dynamical phases of a BCS superconductor using an ensemble of cold atoms trapped in an optical cavity.
Our proposal paves the way for the study of non-equilibrium features of quantum magnetism and superconductivity.
arXiv Detail & Related papers (2020-11-25T20:29:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.