論文の概要: Financial Vision Based Reinforcement Learning Trading Strategy
- arxiv url: http://arxiv.org/abs/2202.04115v1
- Date: Thu, 3 Feb 2022 02:14:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-13 22:42:08.603689
- Title: Financial Vision Based Reinforcement Learning Trading Strategy
- Title(参考訳): 金融ビジョンに基づく強化学習トレーディング戦略
- Authors: Yun-Cheng Tsai, Fu-Min Szu, Jun-Hao Chen, Samuel Yen-Chi Chen
- Abstract要約: AI取引の潜在的なリスクは、"ブラックボックス"決定である。
適切な監督なしにAIを使用する場合、AIは間違った選択を導き、大きな損失を被る可能性がある。
これらの問題は、トレーディング分野でAI技術が説明できる課題も浮き彫りにする。
- 参考スコア(独自算出の注目度): 2.299476124054149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in artificial intelligence (AI) for quantitative trading have
led to its general superhuman performance in significant trading performance.
However, the potential risk of AI trading is a "black box" decision. Some AI
computing mechanisms are complex and challenging to understand. If we use AI
without proper supervision, AI may lead to wrong choices and make huge losses.
Hence, we need to ask about the AI "black box", including why did AI decide to
do this or not? Why can people trust AI or not? How can people fix their
mistakes? These problems also highlight the challenges that AI technology can
explain in the trading field.
- Abstract(参考訳): 定量的取引のための人工知能(AI)の最近の進歩は、その一般的な超人的性能を重要な取引性能に導いた。
しかし、AI取引の潜在的なリスクは、"ブラックボックス"決定である。
一部のAIコンピューティングメカニズムは複雑で理解が難しい。
適切な監督なしにAIを使用する場合、AIは間違った選択を導き、大きな損失をもたらす可能性がある。
ですから、なぜAIがこれを決定したのか、など、AIの“ブラックボックス”について尋ねる必要があります。
なぜAIを信用できるのか?
どうやってミスを直せるのか?
これらの問題は、トレーディング分野でAI技術が説明できる課題も強調している。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - On Two XAI Cultures: A Case Study of Non-technical Explanations in
Deployed AI System [3.4918511133757977]
XAIの多くは、実際にはデプロイされたAIシステムの主要なオーディエンスであり、主要な利害関係者である非AI専門家には理解できない。
我々は,非技術者を対象としたXAI手法の開発が重要であることを主張する。
そして、AIの専門家が非技術ステークホルダーにAI決定の非技術的な説明を提供した、実生活のケーススタディを提示します。
論文 参考訳(メタデータ) (2021-12-02T07:02:27Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - "Weak AI" is Likely to Never Become "Strong AI", So What is its Greatest
Value for us? [4.497097230665825]
多くの研究者は、ここ数十年でAIがほとんど進歩していないと主張している。
著者は、AIに関する議論が存在する理由を説明します。(2)「弱いAI」と「強いAI」と呼ばれる2つのAI研究パラダイムを区別します。
論文 参考訳(メタデータ) (2021-03-29T02:57:48Z) - AI Failures: A Review of Underlying Issues [0.0]
私たちは、概念化、設計、デプロイメントの欠陥を考慮して、AIの失敗に焦点を当てています。
AIシステムは、AIシステムの設計において、欠落とコミッショニングエラーのために失敗する。
AIシステムは、事実上道徳的な判断を下すことが求められる状況で、かなり失敗する可能性が高い。
論文 参考訳(メタデータ) (2020-07-18T15:31:29Z) - Towards AI Forensics: Did the Artificial Intelligence System Do It? [2.5991265608180396]
私たちは、デザインとグレーボックス分析によって潜在的に悪意のあるAIに焦点を当てています。
畳み込みニューラルネットワークによる評価は、悪意のあるAIを特定する上での課題とアイデアを示している。
論文 参考訳(メタデータ) (2020-05-27T20:28:19Z) - Evidence-based explanation to promote fairness in AI systems [3.190891983147147]
人は意思決定をし、通常、自分の決定を他の人や何かに説明する必要があります。
意思決定をAIサポートで説明するためには、AIがその決定の一部となっているかを理解する必要がある。
我々は,「意思決定の物語を語る」ためのエビデンスに基づく説明設計アプローチを模索してきた。
論文 参考訳(メタデータ) (2020-03-03T14:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。