論文の概要: Adapting reservoir computing to solve the Schr\"odinger equation
- arxiv url: http://arxiv.org/abs/2202.06130v1
- Date: Sat, 12 Feb 2022 19:28:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-26 00:46:12.475419
- Title: Adapting reservoir computing to solve the Schr\"odinger equation
- Title(参考訳): Schr\\odinger方程式の解法への貯水池計算の適用
- Authors: L. Domingo, J. Borondo and F. Borondo
- Abstract要約: 貯留層計算(Reservoir computing)は、時系列の進化を予測する機械学習アルゴリズムである。
時間に依存するシュリンガー方程式を統合するためにこの手法を適用し、時間における初期波動関数を伝播する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reservoir computing is a machine learning algorithm that excels at predicting
the evolution of time series, in particular, dynamical systems. Moreover, it
has also shown superb performance at solving partial differential equations. In
this work, we adapt this methodology to integrate the time-dependent
Schr\"odinger equation, propagating an initial wavefunction in time. Since such
wavefunctions are complex-valued high-dimensional arrays the reservoir
computing formalism needs to be extended to cope with complex-valued data.
Furthermore, we propose a multi-step learning strategy that avoids overfitting
the training data. We illustrate the performance of our adapted reservoir
computing method by application to four standard problems in molecular
vibrational dynamics.
- Abstract(参考訳): 貯留層計算(Reservoir computing)は、時系列、特に動的システムの進化を予測する機械学習アルゴリズムである。
さらに、偏微分方程式の解法における超越性も示している。
本研究では、この手法を時間依存シュリンガー方程式の統合に適用し、初期波動関数を時間内に伝播する。
このような波動関数は複素値高次元配列であるため、複素値データに対処するために、貯留層計算形式を拡張する必要がある。
さらに,トレーニングデータの過度な適合を回避する多段階学習戦略を提案する。
分子振動力学における4つの標準問題に適用した適応型貯水池計算法の性能について述べる。
関連論文リスト
- Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach [0.1492582382799606]
本稿では, 時間-屈折偏微分方程式の解法として, 効率的な変分型量子古典アルゴリズムを提案する。
その結果, 解の忠実度は分数指数に不感であり, 勾配評価コストは時間ステップ数とともに経済的にスケールすることがわかった。
論文 参考訳(メタデータ) (2024-06-13T02:27:16Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Iterative Sketching for Secure Coded Regression [66.53950020718021]
分散線形回帰を高速化する手法を提案する。
具体的には、方程式の系の基礎をランダムに回転させ、次にサブサンプルブロックを回転させ、情報を同時に確保し、回帰問題の次元を小さくする。
論文 参考訳(メタデータ) (2023-08-08T11:10:42Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - Locally Regularized Neural Differential Equations: Some Black Boxes Were
Meant to Remain Closed! [3.222802562733787]
ニューラル微分方程式のような暗黙の層深層学習技術は重要なモデリングフレームワークとなっている。
パフォーマンスとトレーニング時間をトレードオフする2つのサンプリング戦略を開発します。
本手法は,関数評価を0.556-0.733xに削減し,予測を1.3-2xに高速化する。
論文 参考訳(メタデータ) (2023-03-03T23:31:15Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Accelerating Real-Time Coupled Cluster Methods with Single-Precision
Arithmetic and Adaptive Numerical Integration [3.469636229370366]
単精度算術は,実時間シミュレーションの記憶コストと乗算コストを約2倍に削減することを示した。
水クラスターの試験シミュレーションにおいて, 最大14因子のさらなる高速化は, 素直な実装によって得られる。
論文 参考訳(メタデータ) (2022-05-10T21:21:49Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - Enhancement of shock-capturing methods via machine learning [0.0]
我々は不連続解を用いてPDEをシミュレートするための改良された有限体積法を開発した。
5階WENO法の結果を改善するためにニューラルネットワークを訓練する。
数値解が過度に拡散するシミュレーションにおいて,本手法はWENOよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-06T21:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。