論文の概要: Adaptive Cholesky Gaussian Processes
- arxiv url: http://arxiv.org/abs/2202.10769v2
- Date: Wed, 23 Feb 2022 11:23:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 07:24:41.459219
- Title: Adaptive Cholesky Gaussian Processes
- Title(参考訳): 適応コレスキーガウス過程
- Authors: Simon Bartels, Kristoffer Stensbo-Smidt, Pablo Moreno-Mu\~noz, Wouter
Boomsma, Jes Frellsen, S{\o}ren Hauberg
- Abstract要約: 本稿では,データの部分集合のみを考慮し,正確なガウス過程モデルを大規模データセットに適合させる手法を提案する。
我々のアプローチは、計算オーバーヘッドが少ない正確な推論中に、サブセットのサイズがフライで選択されるという点で新しくなっています。
- 参考スコア(独自算出の注目度): 7.684183064816171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method to fit exact Gaussian process models to large datasets by
considering only a subset of the data. Our approach is novel in that the size
of the subset is selected on the fly during exact inference with little
computational overhead. From an empirical observation that the log-marginal
likelihood often exhibits a linear trend once a sufficient subset of a dataset
has been observed, we conclude that many large datasets contain redundant
information that only slightly affects the posterior. Based on this, we provide
probabilistic bounds on the full model evidence that can identify such subsets.
Remarkably, these bounds are largely composed of terms that appear in
intermediate steps of the standard Cholesky decomposition, allowing us to
modify the algorithm to adaptively stop the decomposition once enough data have
been observed. Empirically, we show that our method can be directly plugged
into well-known inference schemes to fit exact Gaussian process models to large
datasets.
- Abstract(参考訳): 本稿では,データのサブセットのみを考慮して,ガウス過程モデルを大規模データセットに適合させる手法を提案する。
我々のアプローチは、計算オーバーヘッドが少ない正確な推論中に、サブセットのサイズがフライで選択されるという点で新しくなっています。
十分なデータセットのサブセットが観測されると、ログマージナル確率は線形傾向を示すことが多いという経験的観察から、多くの大きなデータセットは後方にわずかに影響するだけの冗長な情報を含んでいると結論づける。
これに基づいて、そのような部分集合を識別できる完全モデル証拠の確率的境界を提供する。
注目すべきことに、これらの境界は、標準コレスキー分解の中間段階に現れる用語で構成されており、十分なデータが観測されたら、その分解を適応的に停止するアルゴリズムを修正することができる。
実験により,提案手法をよく知られた推論手法に直接接続して,正確なガウス過程モデルを大規模データセットに適合させることができることを示す。
関連論文リスト
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
本研究では,これらの問題に対処するために,Annealed Importance Smpling (AIS)アプローチを提案する。
シークエンシャルモンテカルロサンプリング器とVIの強度を組み合わせることで、より広い範囲の後方分布を探索し、徐々にターゲット分布に接近する。
実験結果から,本手法はより厳密な変動境界,高い対数類似度,より堅牢な収束率で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-13T08:09:05Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
ガウス過程の回帰は、よく校正された不確実性推定を提供するために広く用いられている。
これは、データが実際に存在する暗黙の低次元多様体のため、高次元データに苦しむ。
本稿では,データ(ラベル付きおよびラベルなし)から直接暗黙構造を完全に微分可能な方法で推定できる手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T09:52:48Z) - Manifold Learning with Sparse Regularised Optimal Transport [0.17205106391379024]
実世界のデータセットはノイズの多い観測とサンプリングを受けており、基礎となる多様体に関する情報を蒸留することが大きな課題である。
本稿では,2次正規化を用いた最適輸送の対称版を利用する多様体学習法を提案する。
得られたカーネルは連続的な極限においてLaplace型演算子と整合性を証明し、ヘテロスケダスティックノイズに対する堅牢性を確立し、これらの結果をシミュレーションで示す。
論文 参考訳(メタデータ) (2023-07-19T08:05:46Z) - Sketched Gaussian Model Linear Discriminant Analysis via the Randomized
Kaczmarz Method [7.593861427248019]
超大規模データに対する二進法クラスガウスモデル線形判別分析(LDA)に対する反復的ランダム化手法であるスケッチ付き線形判別分析を提案する。
最小二乗の定式化を利用して、降下勾配の枠組みを動員する。
一定回数の反復で新しいデータに対するスケッチ付き予測を収束保証する。
論文 参考訳(メタデータ) (2022-11-10T18:29:36Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Probabilistic Registration for Gaussian Process 3D shape modelling in
the presence of extensive missing data [63.8376359764052]
本稿では,ガウス過程の定式化に基づく形状適合/登録手法を提案する。
様々な変換を持つ2次元の小さなデータセットと耳の3次元データセットの両方で実験が行われる。
論文 参考訳(メタデータ) (2022-03-26T16:48:27Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
D$次元データポイントの分布から主グラフを学習するために,Mixture Modelsの正規化バージョンを提案する。
モデルのパラメータは期待最大化手順によって反復的に推定される。
論文 参考訳(メタデータ) (2021-06-16T18:00:02Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。