A Dynamic Mode Decomposition Approach for Decentralized Spectral
Clustering of Graphs
- URL: http://arxiv.org/abs/2203.00004v1
- Date: Sat, 26 Feb 2022 03:48:35 GMT
- Title: A Dynamic Mode Decomposition Approach for Decentralized Spectral
Clustering of Graphs
- Authors: Hongyu Zhu, Stefan Klus and Tuhin Sahai
- Abstract summary: We show that propagating waves in the graph followed by a local dynamic mode decomposition (DMD) at every node is capable of retrieving the eigenvalues and the local eigenvector components of the graph Laplacian.
We demonstrate the DMD is more robust than the existing FFT based approach and requires 20 times fewer steps of the wave equation to accurately recover the clustering information.
- Score: 2.114158481153364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel robust decentralized graph clustering algorithm that is
provably equivalent to the popular spectral clustering approach. Our proposed
method uses the existing wave equation clustering algorithm that is based on
propagating waves through the graph. However, instead of using a fast Fourier
transform (FFT) computation at every node, our proposed approach exploits the
Koopman operator framework. Specifically, we show that propagating waves in the
graph followed by a local dynamic mode decomposition (DMD) computation at every
node is capable of retrieving the eigenvalues and the local eigenvector
components of the graph Laplacian, thereby providing local cluster assignments
for all nodes. We demonstrate that the DMD computation is more robust than the
existing FFT based approach and requires 20 times fewer steps of the wave
equation to accurately recover the clustering information and reduces the
relative error by orders of magnitude. We demonstrate the decentralized
approach on a range of graph clustering problems.
Related papers
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - MeanCut: A Greedy-Optimized Graph Clustering via Path-based Similarity
and Degree Descent Criterion [0.6906005491572401]
spectral clustering is popular and attractive due to the remarkable performance, easy implementation, and strong adaptability.
We propose MeanCut as the objective function and greedily optimize it in degree descending order for a nondestructive graph partition.
The validity of our algorithm is demonstrated by testifying on real-world benchmarks and application of face recognition.
arXiv Detail & Related papers (2023-12-07T06:19:39Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
arXiv Detail & Related papers (2022-03-02T20:07:04Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural
Networks [24.017988997693262]
We study the problem of clustering nodes in a dynamic graph, where the connections between nodes and nodes' cluster memberships may change over time.
We first propose a simple decay-based clustering algorithm that clusters nodes based on weighted connections between them, where the weight decreases at a fixed rate over time.
We characterize the optimal decay rate for each cluster and propose a clustering method that achieves almost exact recovery of the true clusters.
arXiv Detail & Related papers (2020-12-16T04:31:19Z) - Spectral clustering on spherical coordinates under the degree-corrected
stochastic blockmodel [5.156484100374058]
A novel spectral clustering algorithm is proposed for community detection under the degree-corrected blockmodel.
Results show improved performance over competing methods in representing computer networks.
arXiv Detail & Related papers (2020-11-09T16:55:38Z) - Scaling Graph Clustering with Distributed Sketches [1.1011268090482575]
We present a method inspired by spectral clustering where we instead use matrix sketches derived from random dimension-reducing projections.
We show that our method produces embeddings that yield performant clustering results given a fully-dynamic block model stream.
We also discuss the effects of block model parameters upon the required dimensionality of the subsequent embeddings, and show how random projections could significantly improve the performance of graph clustering in distributed memory.
arXiv Detail & Related papers (2020-07-24T17:38:04Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.