論文の概要: Performance of Distribution Regression with Doubling Measure under the
seek of Closest Point
- arxiv url: http://arxiv.org/abs/2203.00155v1
- Date: Tue, 1 Mar 2022 00:19:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 00:45:08.137273
- Title: Performance of Distribution Regression with Doubling Measure under the
seek of Closest Point
- Title(参考訳): 最接近点を求める2倍尺度による分布回帰特性
- Authors: Ilqar Ramazanli
- Abstract要約: 分布の分布が1より2倍大きいことを前提として分布回帰問題を考察する。
まず、1より大きい2倍の測度を持つ任意の分布の幾何学を探求し、その周りの小さな理論を構築する。
次に, この理論を用いて最も近い分布の1つを適応的に発見し, これらの分布に基づいて回帰値を計算する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the distribution regression problem assuming the distribution of
distributions has a doubling measure larger than one. First, we explore the
geometry of any distributions that has doubling measure larger than one and
build a small theory around it. Then, we show how to utilize this theory to
find one of the nearest distributions adaptively and compute the regression
value based on these distributions. Finally, we provide the accuracy of the
suggested method here and provide the theoretical analysis for it.
- Abstract(参考訳): 分布の分布が1より2倍大きいことを前提として分布回帰問題を考察する。
まず, 2倍の測度を持つ任意の分布の幾何学を探索し,その周りの小さな理論を構築する。
次に,この理論を用いて最も近い分布の1つを適応的に見つけ,それらの分布に基づいて回帰値を計算する方法を示す。
最後に,提案手法の精度と理論的解析について述べる。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Distributional Matrix Completion via Nearest Neighbors in the Wasserstein Space [8.971989179518216]
わずかに観察された経験的分布の行列を考えると、観測された行列と観測されていない行列の両方に関連する真の分布をインプットしようと試みる。
最適輸送のツールを用いて、最も近い隣人法を分布設定に一般化する。
論文 参考訳(メタデータ) (2024-10-17T00:50:17Z) - Generalizing to any diverse distribution: uniformity, gentle finetuning and rebalancing [55.791818510796645]
我々は,訓練データから大きく逸脱した場合でも,様々なテスト分布によく適応するモデルを開発することを目的としている。
ドメイン適応、ドメイン一般化、ロバスト最適化といった様々なアプローチは、アウト・オブ・ディストリビューションの課題に対処しようと試みている。
我々は、既知のドメイン内の十分に多様なテスト分布にまたがる最悪のケースエラーを考慮することで、より保守的な視点を採用する。
論文 参考訳(メタデータ) (2024-10-08T12:26:48Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - On Best-Arm Identification with a Fixed Budget in Non-Parametric
Multi-Armed Bandits [0.0]
我々は、腕上の分布の一般、おそらくはパラメトリックでないモデルDを考える。
情報理論量に基づいて最適なアームを誤識別する平均対数確率の上限を提案する。
論文 参考訳(メタデータ) (2022-09-30T10:55:40Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Robust Learning of Optimal Auctions [84.13356290199603]
本研究では、入札者の評価値のサンプルを逆向きに破損させたり、逆向きに歪んだ分布から引き出すことができる場合に、サンプルから収益-最適マルチバイダオークションを学習する問題について検討する。
我々は,コルモゴロフ-スミルノフ距離における元の分布に対して$alpha$-closeの「全ての真の分布」に対して,収入がほぼ同時に最適であるメカニズムを学習できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-13T17:37:21Z) - Parametrization invariant interpretation of priors and posteriors [0.0]
我々は,「事前分布がモデルのパラメータ上で確率分布を確立する」という考え方から,「事前分布が確率分布を超えた確率分布を確立する」という考え方に移行した。
この考え方の下では、確率分布上の任意の分布は「内在的」であり、つまり多様体に選択される特定のパラメトリゼーションに不変である。
論文 参考訳(メタデータ) (2021-05-18T06:45:05Z) - On the capacity of deep generative networks for approximating
distributions [8.798333793391544]
ニューラルネットワークが一次元音源分布をワッサーシュタイン距離の高次元目標分布に任意に近い分布に変換することを証明した。
近似誤差は周囲次元で最も直線的に増加することが示されている。
$f$-divergences は、サンプルを生成するための分布の指標として、Waserstein 距離よりも適切ではない。
論文 参考訳(メタデータ) (2021-01-29T01:45:02Z) - Exploring Maximum Entropy Distributions with Evolutionary Algorithms [0.0]
与えられた制約集合に対する最大エントロピー確率分布を数値的に発展させる方法を示す。
進化的アルゴリズムは、よく知られた分析結果の近似を得ることができる。
分布の多くが対称で連続である理由を説明するが、いくつかはそうではない。
論文 参考訳(メタデータ) (2020-02-05T19:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。