論文の概要: Efficient and Stable Multi-Dimensional Kolmogorov-Smirnov Distance
- arxiv url: http://arxiv.org/abs/2504.11299v1
- Date: Tue, 15 Apr 2025 15:42:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:05:36.028800
- Title: Efficient and Stable Multi-Dimensional Kolmogorov-Smirnov Distance
- Title(参考訳): 効率的な安定多次元コルモゴロフ・スミルノフ距離
- Authors: Peter Matthew Jacobs, Foad Namjoo, Jeff M. Phillips,
- Abstract要約: 確率分布間のコルモゴロフ-スミルノフ距離を多次元設定に拡張する。
分布と分布からのサンプルの距離は, 試料の大きさが大きくなるにつれて0に収束することを示す。
- 参考スコア(独自算出の注目度): 7.326930455001404
- License:
- Abstract: We revisit extending the Kolmogorov-Smirnov distance between probability distributions to the multidimensional setting and make new arguments about the proper way to approach this generalization. Our proposed formulation maximizes the difference over orthogonal dominating rectangular ranges (d-sided rectangles in R^d), and is an integral probability metric. We also prove that the distance between a distribution and a sample from the distribution converges to 0 as the sample size grows, and bound this rate. Moreover, we show that one can, up to this same approximation error, compute the distance efficiently in 4 or fewer dimensions; specifically the runtime is near-linear in the size of the sample needed for that error. With this, we derive a delta-precision two-sample hypothesis test using this distance. Finally, we show these metric and approximation properties do not hold for other popular variants.
- Abstract(参考訳): 我々は、確率分布間のコルモゴロフ-スミルノフ距離を多次元設定に拡張し、この一般化にアプローチする適切な方法に関する新しい議論を行う。
提案した定式化は、直交支配矩形範囲(R^dのd側矩形)の差を最大化し、積分確率計量である。
また、分布と分布からのサンプルの間の距離は、サンプルサイズが大きくなるにつれて0に収束し、この速度を束縛する。
さらに、この近似誤差まで、4次元以下の距離を効率的に計算できることを示し、具体的には、ランタイムはその誤差に必要なサンプルのサイズをほぼ直線的に表す。
これにより、この距離を用いてデルタ精度2サンプル仮説を導出する。
最後に、これらの計量および近似特性が他の一般的な不変量に対して成り立たないことを示す。
関連論文リスト
- Quasi-Bayes meets Vines [2.3124143670964448]
我々は、スクラーの定理を用いて、準ベイズ予想を高次元に拡張する別の方法を提案する。
提案した準ベイジアンVine (QB-Vine) は完全に非パラメトリックな密度推定器であることを示す。
論文 参考訳(メタデータ) (2024-06-18T16:31:02Z) - Robust Ellipsoid Fitting Using Axial Distance and Combination [15.39157287924673]
ランダムサンプルコンセンサス(RANSAC)では、楕円体フィッティングの問題は点からモデルまでの距離を最小化する問題として定式化することができる。
代数的距離から変換される軸距離と呼ばれる新しい距離計量を提案する。
軸方向距離とサンプソン距離の組合せを用いて, 試料集束型楕円体フィッティング法を提案する。
論文 参考訳(メタデータ) (2023-04-02T11:52:33Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
滑らかな条件下では、2つの分布の間の正方形ワッサーシュタイン距離は、魅力的な統計的誤差上界で効率的に計算できる。
生成的モデリングのような応用への関心の対象は、基礎となる最適輸送写像である。
そこで本研究では,地図上の統計的誤差であるL2$が,既存のミニマックス下限値とほぼ一致し,スムーズな地図推定が可能となる最初のトラクタブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-03T13:45:36Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Kernel distance measures for time series, random fields and other
structured data [71.61147615789537]
kdiffは、構造化データのインスタンス間の距離を推定するためのカーネルベースの新しい尺度である。
これはインスタンス間の自己類似性と交差類似性の両方を考慮し、距離分布の低い定量値を用いて定義される。
kdiffをクラスタリングと分類問題のための距離尺度として用いた分離性条件について,いくつかの理論的結果が得られた。
論文 参考訳(メタデータ) (2021-09-29T22:54:17Z) - Manifold Hypothesis in Data Analysis: Double Geometrically-Probabilistic
Approach to Manifold Dimension Estimation [92.81218653234669]
本稿では, 多様体仮説の検証と基礎となる多様体次元推定に対する新しいアプローチを提案する。
我々の幾何学的手法はミンコフスキー次元計算のためのよく知られたボックスカウントアルゴリズムのスパースデータの修正である。
実データセットの実験では、2つの手法の組み合わせに基づく提案されたアプローチが強力で効果的であることが示されている。
論文 参考訳(メタデータ) (2021-07-08T15:35:54Z) - Fast Approximation of the Sliced-Wasserstein Distance Using
Concentration of Random Projections [19.987683989865708]
Sliced-Wasserstein distance (SW) は、機械学習アプリケーションでますます使われている。
本稿では,測度現象の集中を利用してSWを近似する新しい視点を提案する。
提案手法は多数のランダムなプロジェクションをサンプリングする必要はなく,通常のモンテカルロ近似と比較して正確かつ容易に利用できる。
論文 参考訳(メタデータ) (2021-06-29T13:56:19Z) - Instance-Optimal Compressed Sensing via Posterior Sampling [101.43899352984774]
後部サンプリング推定器がほぼ最適回復保証を達成できることを示す。
本稿では,Langevin dynamics を用いた深部生成前駆体の後方サンプリング推定器を実装し,MAP よりも精度の高い推定値が得られることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-21T22:51:56Z) - Reweighting samples under covariate shift using a Wasserstein distance
criterion [0.0]
両試料の実験的測度間のワッサーシュタイン距離を最小化する最適再重み付けについて検討した。
期待されるワッサーシュタイン距離の一貫性とある程度の収束速度が導出される。
これらの結果は、不確実性定量化を非結合推定に適用し、最近近傍回帰に対する一般化誤差の有界化に適用する。
論文 参考訳(メタデータ) (2020-10-19T07:23:55Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。