論文の概要: First do not fall: learning to exploit the environment with a damaged
humanoid robot
- arxiv url: http://arxiv.org/abs/2203.00316v1
- Date: Tue, 1 Mar 2022 09:43:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-02 14:51:29.716416
- Title: First do not fall: learning to exploit the environment with a damaged
humanoid robot
- Title(参考訳): まずは、損傷したヒューマノイドロボットで環境を悪用する学習
- Authors: Timoth\'ee Anne, Elo\"ise Dalin, Ivan Bergonzani, Serena Ivaldi, and
Jean-Baptiste Mouret
- Abstract要約: 人間型ロボットは危険な状況で人間を置き換えることができるが、そのような状況のほとんどは彼らにとって同様に危険である。
本稿では,この接触位置を選択するニューラルネットワークを学習するD-Reflexという手法を紹介する。
D-Reflexは、シミュレーションされたTALOSロボットが回避可能なフォールの75%以上を回避できることを示す。
- 参考スコア(独自算出の注目度): 3.1969855247377823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humanoid robots could replace humans in hazardous situations but most of such
situations are equally dangerous for them, which means that they have a high
chance of being damaged and fall. We hypothesize that humanoid robots would be
mostly used in buildings, which makes them likely to be close to a wall. To
avoid a fall, they can therefore lean on the closest wall, like a human would
do, provided that they find in a few milliseconds where to put the hand(s).
This article introduces a method, called D-Reflex, that learns a neural network
that chooses this contact position given the wall orientation, the wall
distance, and the posture of the robot. This contact position is then used by a
whole-body controller to reach a stable posture. We show that D-Reflex allows a
simulated TALOS robot (1.75m, 100kg, 30 degrees of freedom) to avoid more than
75% of the avoidable falls.
- Abstract(参考訳): 人間型ロボットは、危険な状況下で人間を置き換えることができるが、そのような状況は彼らにとって同様に危険である。
私たちは、ヒューマノイドロボットは建物で主に使用されるだろうと考えており、壁の近くにいる可能性が高い。
転倒を避けるために、手を置く場所が数ミリ秒で見つかると、人間のように最も近い壁に傾くことができる。
本稿では, 壁方向, 壁距離, ロボットの姿勢に応じて, この接触位置を選択するニューラルネットワークを学習するD-Reflexという手法を紹介する。
この接触位置は全身制御装置によって安定した姿勢に達するために使用される。
d-reflexはタロスロボット(1.75m,100kg,30度自由度)が回避可能な落下の75%以上を回避できることを示した。
関連論文リスト
- HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
ヒューマノイドが人間のデータから動きや自律的なスキルを学ぶためのフルスタックシステムを導入する。
まず、既存の40時間動作データセットを用いて、強化学習によるシミュレーションの低レベルポリシーを訓練する。
次に、自己中心型視覚を用いてスキルポリシーを訓練し、ヒューマノイドが自律的に異なるタスクを完了できるようにする。
論文 参考訳(メタデータ) (2024-06-15T00:41:34Z) - Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset [52.22758311559]
本研究では,ユーザとスポット間のダイアドインタラクションにおける3次元ポーズ推定と予測のための新しいデータセットであるHARPERを紹介する。
キーノーベルティは、ロボットの視点、すなわちロボットのセンサーが捉えたデータに焦点を当てることである。
HARPERの基盤となるシナリオには15のアクションが含まれており、そのうち10つはロボットとユーザの間の物理的接触を含んでいる。
論文 参考訳(メタデータ) (2024-03-21T14:53:50Z) - Expressive Whole-Body Control for Humanoid Robots [20.132927075816742]
我々は、人間の動きをできるだけリアルに模倣するために、人間サイズのロボットで全身制御ポリシーを学習する。
シミュレーションとSim2Real転送のトレーニングにより、私たちのポリシーはヒューマノイドロボットを制御して、さまざまなスタイルで歩いたり、人と握手したり、現実世界で人間と踊ったりできる。
論文 参考訳(メタデータ) (2024-02-26T18:09:24Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
我々は、人間なら誰でもロボットの手と腕を制御できるシステムを構築します。
ロボットは、人間のオペレーターを1台のRGBカメラで観察し、その動作をリアルタイムで模倣する。
我々はこのデータを利用して、人間の手を理解するシステムを訓練し、人間のビデオストリームをスムーズで、素早く、安全に、意味論的に誘導デモに類似したロボットのハンドアーム軌道に再ターゲティングする。
論文 参考訳(メタデータ) (2022-02-21T18:59:59Z) - From Movement Kinematics to Object Properties: Online Recognition of
Human Carefulness [112.28757246103099]
ロボットは、視覚だけで、人間のパートナーが物体を動かす際に注意を払っているかを、どのようにオンラインで推測できるかを示す。
我々は,低解像度カメラでも高い精度(最大81.3%)でこの推論を行うことができることを示した。
パートナーの行動を観察することによる動きの注意の迅速な認識により、ロボットはオブジェクトに対する行動に適応し、人間のパートナーと同じケアの度合いを示すことができる。
論文 参考訳(メタデータ) (2021-09-01T16:03:13Z) - Target Reaching Behaviour for Unfreezing the Robot in a Semi-Static and
Crowded Environment [2.055949720959582]
本研究では,人間の存在により凍結したロボットの進路をクリアする社会規範に不満を呈する車輪付きヒューマノイドロボットに対して,ロボットの動作を提案する。
1)人間の手や腕を検知するヨロv3アルゴリズムを用いた検出モジュール,2)近似ポリシー最適化アルゴリズムを用いたシミュレーションで訓練されたポリシーを利用するジェスチャーモジュール,の2つのモジュールで構成されている。
論文 参考訳(メタデータ) (2020-12-02T13:43:59Z) - Minimizing Robot Navigation-Graph For Position-Based Predictability By
Humans [20.13307800821161]
人間とロボットが同じ空間を移動しながら独自のタスクを遂行している状況では、予測可能な経路が不可欠である。
ロボットの数が増加するにつれて、人間がロボットの進路を予測するための認知的努力は不可能になる。
そこで本研究では,位置に基づく予測可能性のために,ロボットのナビゲーショングラフを最小化することを提案する。
論文 参考訳(メタデータ) (2020-10-28T22:09:10Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。