論文の概要: Asymptotic Normality of Log Likelihood Ratio and Fundamental Limit of
the Weak Detection for Spiked Wigner Matrices
- arxiv url: http://arxiv.org/abs/2203.00821v1
- Date: Wed, 2 Mar 2022 02:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 16:06:52.063935
- Title: Asymptotic Normality of Log Likelihood Ratio and Fundamental Limit of
the Weak Detection for Spiked Wigner Matrices
- Title(参考訳): スパイクウィグナー行列における対数度比の漸近正規性と弱検出の基本限界
- Authors: Hye Won Chung, Jiho Lee, Ji Oon Lee
- Abstract要約: ランクワンスパイクされたウィグナーモデルにおける信号の存在を検出する問題を考える。
我々は,信号対雑音比が一定の閾値以下である場合に,スパイクされたモデルとヌルモデルとの対数確率比がガウスに収束することを証明した。
- 参考スコア(独自算出の注目度): 13.653940190782142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of detecting the presence of a signal in a rank-one
spiked Wigner model. Assuming that the signal is drawn from the Rademacher
prior, we prove that the log likelihood ratio of the spiked model against the
null model converges to a Gaussian when the signal-to-noise ratio is below a
certain threshold. From the mean and the variance of the limiting Gaussian, we
also compute the limit of the sum of the Type-I error and the Type-II error of
the likelihood ratio test.
- Abstract(参考訳): ランクワンスパイクされたウィグナーモデルにおける信号の存在を検出する問題を考える。
先行してラデマッハから信号が引き出されると仮定すると、スパイクされたモデルとヌルモデルとの対数確率比は、信号対雑音比が一定の閾値以下であるときにガウスに収束する。
また, 限界ガウスの平均と分散から, type-i 誤差の和とラピエーション比テストの type-ii 誤差の和の極限を計算する。
関連論文リスト
- Max-affine regression via first-order methods [7.12511675782289]
最大アフィンモデルは信号処理と統計学の応用においてユビキタスに現れる。
最大アフィン回帰に対する勾配降下(GD)とミニバッチ勾配降下(SGD)の非漸近収束解析を行った。
論文 参考訳(メタデータ) (2023-08-15T23:46:44Z) - Off-the-grid prediction and testing for linear combination of translated features [2.774897240515734]
付加的なガウス雑音過程で信号(離散あるいは連続)が観測されるモデルを考える。
我々は,スケールパラメータが変化する可能性を考慮して,オフ・ザ・グリッド推定器の過去の予測結果を拡張した。
本稿では,観測信号の特徴が与えられた有限集合に属するか否かを検証する手法を提案する。
論文 参考訳(メタデータ) (2022-12-02T13:48:45Z) - Modeling High-Dimensional Data with Unknown Cut Points: A Fusion
Penalized Logistic Threshold Regression [2.520538806201793]
従来のロジスティック回帰モデルでは、リンク関数は線形で連続であると見なされることが多い。
我々は、全ての連続した特徴が順序レベルに離散化され、さらにバイナリ応答が決定されるしきい値モデルを考える。
糖尿病のような慢性疾患の早期発見と予知の問題において,ラッソモデルが好適であることが判明した。
論文 参考訳(メタデータ) (2022-02-17T04:16:40Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Detection of Signal in the Spiked Rectangular Models [8.185918509343818]
雑音がガウス的でない場合、行列成分の事前変換により主成分分析を改善することができることを示す。
また,計算複雑性の低い信号の存在を検出する仮説テストを提案する。
論文 参考訳(メタデータ) (2021-04-28T01:15:45Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
第一次アルゴリズムを用いて,厳密な凸と滑らかな非制約最適化問題の解法について検討する。
我々は,過去の勾配を平均化し,実装が容易な小説「Recursive One-Over-T SGD」を考案した。
有限サンプル, 漸近感覚, 感覚の両面において, 最先端の性能を同時に達成できることを実証する。
論文 参考訳(メタデータ) (2020-08-28T14:46:56Z) - The Generalized Lasso with Nonlinear Observations and Generative Priors [63.541900026673055]
我々は、幅広い測定モデルで満たされるガウス下測度を仮定する。
この結果から, 局所埋込特性を仮定して, 均一回復保証まで拡張できることが示唆された。
論文 参考訳(メタデータ) (2020-06-22T16:43:35Z) - Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable
Embeddings with Generative Priors [52.06292503723978]
生成モデルを用いた圧縮センシングの進歩により, 生成モデルを用いた1ビット圧縮センシングの問題点を考察した。
まずノイズのない1ビット測定を考察し, ガウス測度に基づく近似回復のためのサンプル複雑性境界を提供する。
また,リプシッツ連続生成モデルを用いた1ビット圧縮センシングにも有効であることを示すため,評価誤差と雑音に対する再構成の堅牢性を示すBinary $epsilon$-Stable Embedding特性を実証した。
論文 参考訳(メタデータ) (2020-02-05T09:44:10Z) - Weak Detection in the Spiked Wigner Model with General Rank [13.45821655503426]
我々は,信号+雑音型行列モデルから信号を検出する統計的決定過程を付加的なウィグナー雑音で検討する。
本稿では,信号の分布や雑音に依存しないデータ行列の線形スペクトル統計に基づく仮説テストを提案する。
論文 参考訳(メタデータ) (2020-01-16T06:40:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。