論文の概要: Quantum Approximate Optimization Algorithm for Bayesian network
structure learning
- arxiv url: http://arxiv.org/abs/2203.02400v1
- Date: Fri, 4 Mar 2022 16:11:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-07 17:53:24.389404
- Title: Quantum Approximate Optimization Algorithm for Bayesian network
structure learning
- Title(参考訳): ベイズネットワーク構造学習のための量子近似最適化アルゴリズム
- Authors: Vicente P. Soloviev, Concha Bielza, Pedro Larra\~naga
- Abstract要約: 本研究では、ベイジアンネットワーク構造学習問題の解法として、特定の種類の変分量子アルゴリズム、量子近似最適化アルゴリズムを用いた。
その結果、量子近似最適化アルゴリズムは、最先端の手法と量子ノイズに対する定量的レジリエンスとの競合結果を提供することを示した。
- 参考スコア(独自算出の注目度): 1.332091725929965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian network structure learning is an NP-hard problem that has been faced
by a number of traditional approaches in recent decades. Currently, quantum
technologies offer a wide range of advantages that can be exploited to solve
optimization tasks that cannot be addressed in an efficient way when utilizing
classic computing approaches. In this work, a specific type of variational
quantum algorithm, the quantum approximate optimization algorithm, was used to
solve the Bayesian network structure learning problem, by employing $3n(n-1)/2$
qubits, where $n$ is the number of nodes in the Bayesian network to be learned.
Our results showed that the quantum approximate optimization algorithm approach
offers competitive results with state-of-the-art methods and quantitative
resilience to quantum noise. The approach was applied to a cancer benchmark
problem, and the results justified the use of variational quantum algorithms
for solving the Bayesian network structure learning problem.
- Abstract(参考訳): ベイジアンネットワーク構造学習は、最近の数十年で多くの伝統的なアプローチで直面してきたNPハード問題である。
現在、量子技術は、古典的なコンピューティングアプローチを利用する際に効率的に対処できない最適化タスクを解くために活用できる幅広い利点を提供している。
本研究では,ベイジアンネットワークのノード数が$n$となる3n(n-1)/2$ qubitsを用いることで,ベイジアンネットワーク構造学習の問題を解決するために,量子近似最適化アルゴリズムと呼ばれる特定の種類の変分量子アルゴリズムを用いた。
その結果、量子近似最適化アルゴリズムは、最先端の手法と量子ノイズに対する定量的レジリエンスによる競合結果を提供することを示した。
このアプローチはがんベンチマーク問題に適用され、ベイズネットワーク構造学習問題を解くために変分量子アルゴリズムを用いることを正当化した。
関連論文リスト
- Benchmarking Variational Quantum Algorithms for Combinatorial Optimization in Practice [0.0]
変分量子アルゴリズム、特に変分量子固有解器の変種は最適化(CO)問題に対処するために提案されている。
ベンチマークとしてMax-Cutを用いてCO問題を解く上で,このスケーリング結果がどのような意味を持つのかを数値的に検討する。
論文 参考訳(メタデータ) (2024-08-06T09:57:34Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum Graph Optimization Algorithm [7.788671046805509]
本研究では,メッセージパス機構を統合した新しい変分量子グラフ最適化アルゴリズムを提案する。
QUBOタスクのスケーラビリティに関して,本アルゴリズムはQAOAよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-09T16:25:07Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
量子近似最適化(Quantum Approximate Optimization, QAOA)は、Max-Cutの問題を効率的に解く可能性において際立っている。
我々は,GNNをウォームスタート手法として,グラフニューラルネットワーク(GNN)を用いてQAOAを最適化する。
以上の結果から,量子コンピューティングにおけるGNNのQAOA性能向上の可能性が示唆され,量子古典的ハイブリッドコンピューティングへの新たな道が開かれた。
論文 参考訳(メタデータ) (2024-03-05T20:23:25Z) - Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
組合せ最適化は、物流から金融まで幅広い分野に適用可能な、困難な問題である。
量子コンピューティングは、様々なアルゴリズムを用いてこれらの問題を解決するために使われてきた。
この研究は、量子と古典のリソースをハイブリッドなアプローチで統合することで、これらの課題を克服する枠組みを提示している。
論文 参考訳(メタデータ) (2024-03-05T17:46:04Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
我々は、反復最大量子アルゴリズム(Iterative Maximum Quantum Algorithms)と呼ばれる、量子最適化のための新しいハイブリッドアプローチのクラスについて研究する。
深度$p=1$のQAOAの場合、このアルゴリズムはMISの古典的欲求アルゴリズムと全く同じ操作と選択を行う。
論文 参考訳(メタデータ) (2023-09-22T18:00:03Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。